Землетрясения Северной Евразии

2024. – Вып. 27 (2020). – С. 101–113. DOI: https://doi.org/10.35540/1818-6254.2024.27.09 EDN: FOXCPR

Metadata in English is at the end of the article

УДК 550.348. (575.3)

СЕЙСМИЧНОСТЬ ТАДЖИКИСТАНА и ПРИЛЕГАЮЩИХ ТЕРРИТОРИЙ в 2020 году Т.Р. Улубиева¹, Р.С. Михайлова², Л.И. Рислинг¹

¹Геофизическая служба НАН Республики Таджикистан, г. Душанбе, tanya_55_08@mail.ru ²Геофизическая служба РАН, г. Обнинск, raisarm-gs@mail.ru

Аннотация. В 2020 г. сейсмический мониторинг территории Таджикистана с прилегающими районами нескольких государств - Узбекистана, Кыргызстана, Китая, Индии, Пакистана, Афганистана - осуществлялся сетью из семи цифровых сейсмических станций Геофизической службы НАН Республики Таджикистан. Всего зарегистрировано 7839 землетрясений в диапазоне Кр=8.6-14.3, из них 1218 – мелкофокусные толчки с h=1-30 км, разбросанные по всей территории зон I–III и 6621 – землетрясения промежуточных (70–276 км) глубин Памиро-Гиндукуша в зоне IV. Ощутимыми были 35 землетрясений, два из которых (6-балльное Колхозабадское 24 апреля 2020 г. с K_P=11.4, Mw_{GCMT}=4.6 и 7-балльное Таджикабадское 4 июля 2020 г. с K_P=13.3, Mw_{GCMT}=5.4) были обследованы с построением карт изосейст. Сводный каталог механизмов очагов землетрясений содержит 45 событий, для которых найдены 66 решений. Наиболее сильные землетрясения с очагом в земной коре в зоне II сгруппировались в срединной части Республики между Южно-Гиссарским и Дарваз-Заалайским разломами (29 января с K_P=13.1, Mw=5.0; 6 мая с K_P=13.0, Mw=5.0; 4 июля с $K_P=13.3$, $M_W=5.4$; 10 ноября с $K_P=13.1$, $M_W=5.0$), а в зоне III – на севере Памира (24 января с $K_P=13.5$, $M_W=5.6$) и на востоке (18 сентября с $K_P=13.3$, $M_W=5.2$). Максимальное землетрясение среди событий из всех зон с K_P =14.3, Mw=5.7 реализовалось 16 июня на глубине h=134 κm в Хорогской подзоне промежуточных землетрясений, а в Афганской подзоне максимальный класс не превысил $K_P=13.1$ (9 апреля с $h=225~\kappa M$). По региону в целом наибольшее количество сейсмической энергии в 2020 г. выделилось на территории зоны IV промежуточных землетрясений $(\Sigma E = 3.756 \cdot 10^{14} \, \text{Дж}).$

Ключевые слова: цифровые станции, коровые землетрясения, промежуточные землетрясения, Памиро-Гиндукуш, механизм очага, интенсивность сотрясений.

Для цитирования: Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Сейсмичность Таджикистана и прилегающих территорий в 2020 г. // Землетрясения Северной Евразии. — 2024. — Вып. 27 (2020). — С. 101—113. DOI: https://doi.org/10.35540/1818-6254.2024.27.09 EDN: FOXCPR

Введение. Регистрация землетрясений в 2020 г. на территории Таджикистана с прилегающими районами нескольких государств (Узбекистана, Кыргызстана, Китая, Индии, Пакистана и Афганистана) производилась единой сетью из семи цифровых сейсмических станций Геофизической службы НАН Таджикистана (ГС НАНТ). Создание годовых каталогов сейсмичности с включением разрозненных макросейсмических данных осуществлялось в ГС НАНТ. Макросейсмическое обследование двух ощутимых землетрясений – Колхозабадского 24 апреля 2020 г. с K_P =11.4, M_S =4.1, I_0 =6 баллов [1] и Таджикабадского 4 июля 2020 г. с K_P =13.3, M_S =5.2, I_0 =7 баллов [2] – выполнено другим академическим учреждением Республики – Институтом геологии, сейсмостойкого строительства и сейсмологии (ИГ-ССС НАНТ). Границы исследуемой территории, заключенной в пределах координат 36–40°N, 67–75°E и 40–41°N, 69–71°E, и схема деления на четыре сейсмоактивные зоны Таджикистана, представленные на рис. 1, не изменились, хотя обработка землетрясений проводилась и вне указанных границ.

Система наблюдений, как и ранее [3, 4], состояла из цифровых широкополосных сейсмических станций Trident+Trillium40: «Чуянгарон», «Гарм», «Гезан», «Игрон», «Шаартуз», «Манем» и «Чорух-Дайрон», координаты и параметры которых приведены в [Прил. 1] к настоящему выпуску журнала. Карта расположения сейсмических станций представлена на рис. 2.

Puc. 1. Сейсмоактивные зоны I-IV и глубинные разломы Таджикистана

Сейсмоактивные зоны: І – Юго-Западный Тянь-Шань; ІІ – Южный Тянь-Шань; ІІІ – Памиро-Гиндукуш (коровые); ІV – Памиро-Гиндукуш (глубокие); 5 – глубинные разломы по [5]: 1 – Северо-Ферганский; 2 – Заамин-Хайдараканский; 3 – Гиссаро-Кокшаальский (Южно-Гиссарский); 4 – Илякско-Вахшский; 5 а – Дарваз-Заалайский; 5 б – Афгано-Северо-Памирский; 6 – Ванч-Акбайтальский; 7 – Каракульско-Сарезские; 8 а – Бартанг-Пшартский; 8 б – Рушано-Северо-Пшартский; 9, 10 – Афгано-Южно-Памирские; 11 – Альбурз-Мормульский; 12 – Андараб-Мирзавалангский.

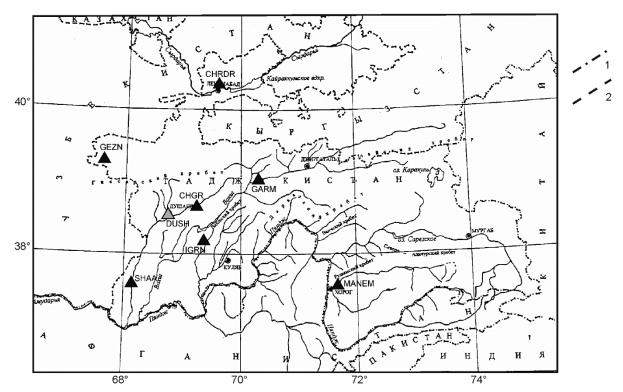


Рис. 2. Сеть цифровых широкополосных сейсмических станций на территории Таджикистана в 2020 г.

1 – внешняя государственная граница Таджикистана; 2 – граница государств внутри содружества СНГ. Серый треугольник – центр обработки в Душанбе.

Методика обработки цифровых записей землетрясений, как указано в [6], несколько изменилась с мая 2018 г., когда перешли на программы ApolloServer для сбора и временного хранения сейсмических данных и Apollo Project для автоматической обработки, анализа и архивации сейсмических данных. Теперь каждый эпицентр анализируется и включается в каталог с учетом погрешности δt_0 определения времени t_0 в очаге с точностью до 0.01~c, погрешности δ (в κM) локации эпицентров с точностью до $0.01~\kappa M$, географические координаты толчков (ϕ и λ) с точностью до 0.001° против 0.01° в прежних каталогах.

Классификация землетрясений проводится традиционно в энергетических классах K_P по номограмме Т.Г. Раутиан [7] с использованием эпицентральных расстояний Δ (κM) для землетрясений в земной коре ($h \le 69 \ \kappa M$) и гипоцентральных расстояний r (κM) — на глубинах $h \ge 70 \ \kappa M$ [8]. Выделенная в регионе в 2020 г. сейсмическая энергия рассчитывалась суммированием энергий отдельных землетрясений, $E=10^{\rm Kp}$. С 2019 г. энергия землетрясений больших магнитуд M > 5.6 рассчитывается по формуле из [9]:

$$\lg E = 8 + 1.1 M,$$
 (1)

где M — магнитуда по поверхностным волнам. В 2020 году землетрясения с Ms>5.6 не происходили, поэтому в каталоге за 2020 г. столбец расчетных энергетических классов отсутствует.

Определенный интерес для оценки энергии представляет землетрясение 16 июня 2020 г. в $01^{\rm h}30^{\rm m}$, имеющее довольно высокую моментную магнитуду Mw=5.7 при низкой из-за большой глубины очага (h=134) магнитуде Ms=4.7 [10]. Возникает вопрос, каким образом оценивать энергию такого землетрясения: либо через класс $K_{\rm P}$ по номограмме Т.Г.Раутиан, учитывая что Ms, равная 4.7, меньше, чем 5.6, либо по формуле (1), учитывая, что моментная магнитуда Mw=5.7 больше, чем 5.6. Для ответа на этот вопрос рассчитаем магнитуду по поверхностным волнам Ms через моментную магнитуду Mw по формуле (2) из [11] (правомерность ее использования для землетрясений Северной Евразии показана в [12]):

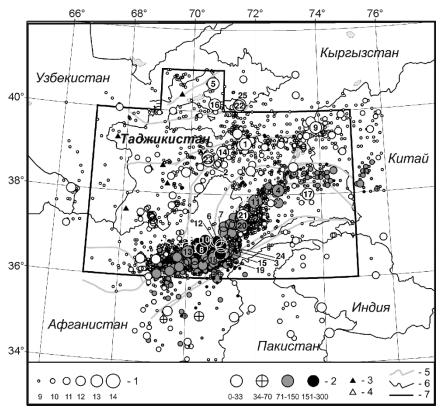
$$Ms = (\ln(Mw - 2.863) + 0.222)/0.233,$$
 (2)

расчетная магнитуда Ms оказалась равной 5.43 (меньше 5.6), что позволяет энергию этого землетрясения определять через энергетический класс K_P , равный в данном случае 14.3.

Каталоги землетрясений и карты эпицентров. В результате сводной обработки составлен каталог землетрясений Таджикистана и прилегающих к нему районов Узбекистана, Кыргызстана и Китая — на севере, Афганистана, Пакистана, Индии — на юге за 2020 г. [Прил. 2]. В него из Сейсмологического бюллетеня ФИЦ ЕГС РАН [10], бюллетеней GCMT [13] и ISC [14] ред. включены значения магнитуд по поверхностным (MS, Ms), объемным (MPSP, mb) волнам и моментная магнитуда (Mw) вместе с сейсмическим моментом Mo. Кроме того, добавлено значительное число макросейсмических данных из сведений ГС НАНТ в [Прил. 2 а], из результатов макросейсмических обследований ИГССС НАНТ в [1, 2], а также из сейсмологического бюллетеня ГС РАН [10], каталога USGS [15] и каталога Копетдага (Туркменистан) [16]. В результате сведения об ощутимости собраны для 67 землетрясений и расписаны по конкретным населенным пунктам [Прил. 4]. Общее число сотрясенных населенных пунктов в 2020 г. составило 99 [Прил. 5]. В каталоге механизмов очагов содержатся 45 землетрясений, для которых приведены 66 решений разных агентств (GCMT, NEIC, ISC, GFZ, IPGP, ИС НАН КР, КОП+ГО БОРОК, МОЅ) [Прил. 3].

Итоговый каталог землетрясений Таджикистана [Прил. 2] за 2020 г. содержит 7839 землетрясений в диапазоне K_P =8.6—14.3, из них 6621 — промежуточные Памиро-Гиндукушские землетрясения с $h \ge 70$ км и 1218 — мелкофокусные толчки с $h \le 30$ км, разбросанные по всей территории. Минимальная глубина гипоцентра h=1 км присвоена 83 землетрясениям с K_P =8.6—11.4, локализованным в косой полосе между широтами 37°N и 41°N, смещающейся по долготе с юго-востока на северо-запад с λ =71.5°—72.5°E на Западном Памире до λ =70.5°—72.0°E между Дарваз-Заалайским (№ 5 а) и Заамин-Хайдараканским (№ 2) разломами, и до λ =69°—70°E — севернее Северо-Ферганского разлома (№ 1). Максимальная глубина очага в 2020 г. равна h=276 км и характеризует слабое землетрясение 6 мая в $00^{\rm h}22^{\rm m}$ с K_P =8.7, ϕ =36.839°N, λ =70.830°E в мантии, в пределах Афганской подзоны промежуточных очагов. Наиболее заметные события с $K_P \ge 12.6$, суммарное число которых в 2020 г. составило N_{Σ} =25, пронумерованы в 1-й графе каталога [Прил. 2] и на карте эпицентров (рис. 3).

Максимальный энергетический класс для коровых землетрясений составил K_P =13.5 и характеризует приповерхностное (h=6 κm) землетрясение под № 1 из **зоны III** за 24 января в 07^h09^m , отмеченное в 44 κm к востоку от Джиргаталя в межгорном прогибе, огибающем Памир с севера. Имеются сведения об его ощутимости как в Таджикистане (I_i =3 балла в Рогуне, Δ =178 κm ; 2 балла в Душанбе, Δ =262 κm), так и в Узбекистане (I_i =4 балла в Фергане, Δ =129 κm ; 3 балла в Намангане, Δ =158 κm , Андижане, Δ =182 κm , Гулистане, Δ =189 κm и др. [Прил. 4]).


Максимальный энергетический класс для промежуточных землетрясений равен K_P =14.3. Землетрясение такой величины зарегистрировано 16 июня в 01^h30^m на территории Таджикистана, в Западном Памире, с ϕ =37.834°N, λ =72.015°E, h=134 κM . Землетрясение ощущалось на значительной территории Центральной Азии в радиусе Δ =616 κM от эпицентра [Прил. 4].

Суммарная энергия всех землетрясений, выделившаяся в их очагах, равна ΣE =5.547·10¹⁴ Дж (табл. 1), что в 2.7 раз меньше, чем в 2019 г. с ΣE =1.520·10¹⁵ Дж, и в 3.3 раз меньше, чем в 2018 г. с ΣE =1.826·10¹⁵ Дж.

Yo			K_{P}				N.T.	SE II.
№ зоны	9	10	11	12	13	14	N_{Σ}	ΣЕ, Дж
I	58	3	3	-	4		68	$4.283 \cdot 10^{13}$
II	388	43	21	5	4		461	6.458·10 ¹³
III	573	77	26	10	3		689	$7.170 \cdot 10^{13}$
IV	5814	653	98	42	13	1	6621	$3.756 \cdot 10^{14}$
Всего	6833	778	148	57	24	1	7839	$5.547 \cdot 10^{14}$

Таблица 1. Распределение числа землетрясений за 2020 г. по энергетическим классам $K_{\rm P}$

По сравнению с соответствующими числами землетрясений в 2019 г., произошло уменьшение числа землетрясений в зонах I, III и IV (68, 689 и 6621 вместо 83, 1001 и 7772) и увеличение в зоне II (461 вместо 379). Карта эпицентров всех землетрясений дана на рис. 3.

Рис. 3. Карта эпицентров землетрясений Таджикистана и прилегающих территорий за 2020 г.

^{1 —} энергетический класс K_P ; 2 — глубина h гипоцентра, κm ; 3, 4 — сейсмическая станция, цифровая и центр обработки в Душанбе соответственно; 5 — глубинный разлом І-го порядка; 6 — государственная граница; 7 — граница зоны ответственности; пронумерованы 25 землетрясений с K_P ≥12.6.

Рассмотрим детально сейсмичность в каждой из зон I–IV.

На территории **Юго-Западного Тянь-Шаня** (**I**), в Согдийской области Таджикистана, впервые после 2004 г. [17] отмечены два землетрясения с K_P ÷13 под номерами № 5 и № 16 на рис. 3.

Первое произошло 26 марта 2020 г. в $04^{h}44^{m}$ с $K_{P}=13.0$, $\varphi=40.68^{\circ}N$, $\lambda=70.65^{\circ}E$, h=10 км в северо-восточном окончании Северо-Ферганского разлома № 1. Оно вызвало сотрясения с I_i =4 балла в Намангане (93 км) и Фергане (103 км), с I_i =3 балла – в Худжанде (98 км) и Андижане (142 км) [Прил. 4]. По данным NEIC в табл. 2, в его очаге произошла подвижка типа взброс по крутой (DP_1 =69°) плоскости NPI северо-восточного (STK_1 =49°) простирания, а по плоскости NP2с близмеридиональным ($STK_2=174^\circ$) простиранием – сдвиго-надвиг по пологой плоскости $(DP_2=33^\circ)$. Но в 2004 г. такой же энергии землетрясение с $K_P=13.0$ произошло 27 марта в $00^{\rm h}43^{\rm m}$ в противоположном, юго-западном, конце Северо-Ферганского разлома (№1 на рис. 1) с ϕ =40.00°N, λ =69.30°E. Замечательно, что тогда в его очаге произошел чистый взброс по близвертикальной ($DP=79^{\circ}$) плоскости и чистый надвиг по пологой ($DP=11^{\circ}$) плоскости, т.е. почти те же подвижки, что и в конце разлома, но в другом очаге 16 лет тому назад. Сравним также даты землетрясений – 27 марта 2004 г. в $00^{\rm h}43^{\rm m}$ и 26 марта 2020 г. в $04^{\rm h}44^{\rm m}$, т.е. случайно они оказались почти одинаковы. Можно еще обратить внимание в 2020 г. на более слабое (K_P =11.4) землетрясение 9 июля в $06^{\rm h}39^{\rm m}$, координаты которого, $\phi=39.98^{\circ}{\rm N}$, $\lambda=69.39^{\circ}{\rm E}$, близки к таковым у толчка 27 марта 2004 года. Следовательно, в 2020 г. оказался задействованным весь разлом по своей длине, т.к. структуры начала Северо-Ферганского разлома толчком с $K_P=11.4$ в июле «ответили» на мартовское событие с K_P =13.0 в его конце. Землетрясение 9 июля ощущалось в Таджикистане с I_i =3 балла в пгт Навкат (Hay) (19 км), пгт Пролетарск (22 км) и 2 балла – в Душанбе (165 км), а также в Узбекистане с I_i =3 балла в городах Джизак (133 км) и Ташкент (144 км) и с I_i =2 балла еще в семи городах Узбекистана [Прил. 4].

Пото	4	L			O	си глаг	вны	х напр	эжк	ений	I	Іода	льные	плос	кос	ГИ	_
Дата, дд.мм	t_0 ,	<i>h</i> ,	Mw	K_{P}		T		N		P		NP	!		NP2	?	Агентство
00.мм	ч мин с	км			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
26.03	04 44 32.7	10	4.3	13.0	57	355	25	219	20	119	49	69	117	174	33	40	NEIC
09.07	06 39 58.8	1	4.3	11.4	76	115	11	255	9	346	89	37	108	247	55	77	NEIC
05.08	08 18 51.7	5	3.8	12.6	30	108	58	316	11	205	251	61	14	154	78	150	ИС НАН К
06.11	07 38 54.8	10	4.8	13.1	68	194	18	51	12	317	25	36	59	241	59	111	GCMT
26.12	10 28 36.7	10	4.9	13.2	72	132	1	225	18	315	46	27	92	224	63	89	GCMT

Таблица 2. Параметры механизма очагов землетрясений зоны I из [Прил. 3]

Землетрясение № 16 5 августа в $08^{\rm h}18^{\rm m}$ с $K_{\rm P}$ =12.6, ϕ =40.17°, λ =70.71° произошло в 9 κM северо-восточнее г. Исфара и в 28 κM к юго-востоку от г. Канибадама, в зоне прохождения восточного окончания Заамин-Хайдараканского разлома (№ 2 на рис. 1). Землетрясение имеет поверхностную глубину h=5 κM . Интенсивность вызванных им сотрясений I_i в Узбекистане составила 4 балла в Фергане (95 κM), Намангане (122 κM); 3 балла – в Андижане (153 κM), Ташкенте (175 κM), Джизаке (245 κM), а в Таджикистане имеются сведения лишь в Канибадаме: 2–3 балла при Δ =28 κM [Прил. 4]. Согласно табл. 2, в его очаге превалировали напряжения сжатия ($PL_{\rm P}$ =11°< $PL_{\rm T}$ =30°), приведшие к чистому сдвигу ($SLIP_1$ =14°) по менее крутой (DP_1 =61°) плоскости NP1 запад—северо-западного (STK_1 =251°) простирания и взбросо-сдвигу ($SLIP_1$ =150°) по более крутой (DP_1 =78°) плоскости NP2 юг-юго-восточного (STK_1 =154°) простирания.

Следует отметить также еще пару близких между собой землетрясений у восточных границ Таджикистана, на территории Кыргызстана (ϕ =40.14°N, λ =71.48°E; ϕ =40.18°N, λ =71.52°E), с K_P =13.1 и 13.2, произошедших 6 ноября в 07^h38^m и 26 декабря в 10^h28^m на одинаковой глубине 10 км (\mathbb{N} 22 и \mathbb{N} 25 на карте эпицентров). Их очаги приурочены к восточному окончанию Заамин-Хайдараканского разлома (\mathbb{N} 2 на рис. 1), где превалировали напряжении сжатия (PL_P =12° или 18° против PL_T =68° или 72°). Согласно значениям SLIP в табл. 2, по обеим нодальным плоскостям в их очагах возникли подвижки типа надвиг по наклонным (DP=36° и 27°) плоскостям NP1 или взбросы по более крутым (DP=59° и 63°) плоскостям NP2.

На территории **Южного Тянь-Шаня (II)** основная активность в 2020 г. реализовалась, согласно карте эпицентров (рис. 3), в срединной его части цепочкой сильных землетрясений

с K_P ÷13 под номерами №№ 2, 9, 14, 23 (с добавкой толчка 12-го класса 13 августа) между двумя крупнейшими глубинными разломами І-го порядка: Южно-Гиссарским (№ 3 на рис. 1) с севера и Дарваз-Заалайским (№ 5 а) — с юга. Их список приведен в табл. 2, в территориальной направленности, с востока на запад.

Начальное звено на востоке связано с землетрясением № 9 в приграничной с Китаем области непосредственно при Южно-Гиссарском разломе близширотного на этом участке простирания. Но из двух равнокрутых (DP_1 =67°, DP_2 =69°) нодальных плоскостей с простираниями STK_1 =107° и STK_2 =206° можно с некоторой натяжкой выбрать в качестве рабочей первую из них. Исходя из их значений SLIP (157° и 25°), в очаге превалировали сдвиги. Землетрясение ощущалось в Кыргызстане (в г. Оше 3 балла при Δ =140 κ м) и Узбекистане (3 балла в Чирчике, Δ =415 κ м, 2 балла в Ташкенте, Δ =433 κ м) [Прил. 4].

Таблица 3. Список землетрясений зоны II, приведенных в порядке их расположения с востока на запад

No	Дата,	t_0 ,	Ги	поцент)	K_{P}			Магнитуда		
	дд.мм.гггг	ч мин с	φ°, N	λ°, E	h, км		MS [10]	Ms [14]	<i>MPSP</i> [10]	$m_{\rm b}[14]$	Mw [13]
№ 9	06.05.2020	10 50 59.8	39.600	73.900	10	13.0	4.4	4.5	5.3	5.2	5.0
№ 14	04.07.2020	09 52 57.8	39.017	70.993	10	13.3	5.3	5.2	5.7	5.5	5.4
№ 2	29.01.2020	09 10 45.3	38.800	70.560	12	13.1	4.7	4.6	5.5	5.2	5.0
№ 23	10.11.2020	14 37 39.2	38.871	70.540	13	13.1	4.6	4.5	5.4	5.3	5.0
	13.08.2020	18 07 15.9	38.510	69.884	8	12.0	4.0	3.9	5.1	4.8	4.7

Таблица 4. Параметры механизма очагов землетрясений зоны II в табл. 3 из [Прил. 3]

Пото	4	1.			Oc	и гла	вны	х нап	ряж	ений		Нода	альные	е плос	скост	М	
Дата, дд.мм	t_0 ,	h,	Mw	K_{P}		T		N		P		NP1	'		NP	2	Агентство
00.мм	ч мин с	КМ			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
06.05.	10 50 59.8	10	5.0	13.0	32	67	58	244	1	336	107	67	157	206	69	25	GCMT
04.07	09 52 57.8	10	5.4	13.3	41	43	48	204	10	205	76	55	155	181	70	38	GCMT
29.01.	09 10 45.3	12	5.0	13.1	69	97	5	199	21	291	30	25	101	197	66	85	GCMT
10.11.	14 37 39.2	13	5.0	13.1	46	333	16	80	40	183	79	87	74	337	16	168	GCMT
13.08.	18 07 15.9	8	4.7	12.0	69	132	1	39	21	309	37	24	87	220	66	91	GCMT

Наиболее интересным из них является землетрясение 4 июля в $09^{\rm h}52^{\rm m}$ с $K_{\rm P}$ =13.3 (под № 14 из табл. 3), произошедшее в 17 κm к юго-востоку от Таджикабада. Оно связано с центральной частью Дарваз-Заалайского разлома (№ 5 а). Глубина очага 10 κm . Землетрясение детально обследовано сотрудником ИГССС НАНТ Р.У. Джураевым в полевых условиях, названо Таджикабадским и описано в отдельной статье [2] настоящего выпуска журнала. Интенсивность сотрясений в его эпицентре составила 7 баллов, макросейсмические данные собраны в 31 населенном пункте, построена карта из четырех изосейст с I_i =7, 6, 5 и 4 балла. Дополнительно имеются макросейс-мические сведения ГС НАНТ по Душанбе [Прил. 2 а], ФИЦ ЕГС РАН — по десяти городам Узбекистана [10], USGS — по двум городам Афганистана [15], собранные воедино в [Прил. 4]. Решение механизма его очага (табл. 4) заимствовано из каталога механизмов очагов землетрясений Таджикистана за 2020 г. [Прил. 3] в варианте агентства GCMT [13]. Более пологая (DP=55°) плоскость NP1 восток—северо-восточного (STK=76°) простирания соответствует как продольной оси системы изосейст, так и простиранию и падению Яфучского разлома (рис. 3 в [2]). Тип подвижки по обеим плоскостям — взбросо-сдвиг. Такой характер механизма является типичным для этого блока.

Следующие два землетрясения, № 2 и № 23, реализовались западнее Таджикабадского, в 23–30 κm к юго-востоку от Гарма. Они разнесены по времени (29 января в $09^{\rm h}10^{\rm m}$ и 10 ноября в $14^{\rm h}37^{\rm m}$), но имеют почти совпадающие эпицентры и равную энергию – $K_{\rm P}$ =13.1. Эпицентры толчков приурочены к южному склону западной части хребта Петра Первого. Очаги находились на глубине $12-13~\kappa m$. Первое из них ощущалось в Таджикистане: в Рогуне (71 κm) и в Душанбе (156 κm) с интенсивностью I_i =3 и 2–3 балла соответственно [Прил. 2 а]), а также в Узбекистане: в Фергане (204 κm) с интенсивностью 3 балла и еще в восьми городах на расстояниях от 253 до 412 κm – 2 балла [Прил. 4]). О втором толчке есть сведения лишь по Душанбе (I_i =2–3 балла при Δ =155 κm ([Прил. 2 а]) и о наличии 17 афтершоков, отмеченных в каталоге ([Прил. 2]).

В очаге землетрясения № 2 29 января превалировали напряжения сжатия (PL_P =21°< PL_T =69°). В результате реализовался надвиг по пологой (DP_1 =25°) плоскости NPI север–северо-восточного

простирания (STK_1 =30°) или взброс по крутой (DP_2 =66°) плоскости NP2 близмеридионального (STK_2 =197°) простирания. Но в очаге землетрясения 10 ноября напряжения сжатия и растяжения весьма близки (PL_P =40°≈ PL_T =46°), что привело к горизонтальному сдвигу ($SLIP_2$ =168°, DP_1 =16°) по плоскости NP2 или взрезу по почти вертикальной (DP_1 =87°) плоскости NP1 восток—северовосточного простирания (STK_1 =79°).

Последнее землетрясение в исследуемой цепочке между Южно-Гиссарским и Дарваз-Заалайским разломами реализовалось уже на западе 13 августа в $18^{\rm h}07^{\rm m}$ на глубине h=8 км с $K_{\rm P}=12.0$, но с заметной по величине моментной магнитудой $Mw_{\rm GCMT}=4.7$. Неожиданно в его очаге по данным агентства GCMT превалировали напряжения сжатия точно с теми же значениями параметров ($PL_{\rm P}=21^{\circ}< PL_{\rm T}=69^{\circ}$), что и в описанном выше очаге более восточного землетрясения N=2 за 29 января с $K_{\rm P}=13.1$, при расстоянии $\Delta=67$ км между эпицентрами. Все параметры механизмов очагов этих землетрясений близки, соответственно, подобны и типы подвижек: взбросы по крутым плоскостям и надвиги – по пологим. Макросейсмика по этому землетрясению имеется лишь по близкому (29 км) пункту Больджуану с $I_{\rm i}=2-3$ балла [Прил. 2° а].

В зоне сближения Южного Тянь-Шаня с северо-восточной окраиной Таджикской депрессии, в 35 κm к северо-востоку от Джиргаталя, 26 октября в $03^{\rm h}10^{\rm m}$, отмечен толчок с $K_{\rm P}$ =12.3, приуроченный к восточному окончанию Гиссаро-Кокшаальского разлома.

На остальной территории **зоны II** сейсмическая активность была значительно ниже, чем на востоке (рис. 3), и к заметным (ощутимым) относятся лишь толчки с K_P ÷11, зарегистрированные возле Душанбе, Тавильдары, Куляба и Колхозабада. Первое произошло в 7 κm к юго-западу от г. Душанбе 10 мая в 12^h52^m с h=10 κm и приурочено к Илякско-Вахшскому глубинному разлому. Ощутимость в г. Душанбе составила 5 баллов [Прил. 2 а]. Район Тавильдары отмечен двумя толчками 11-го класса (20 апреля в 08^h16^m с K_P =11.2, I_i =3 балла, Δ =16 κm ; 29 июня в 16^h03^m с K_P =11.0, I_i =2–3 балла, Δ =29 κm). В юго-восточной части Таджикской депрессии (район Кулябской впадины, в 25 κm к западу от г. Куляба) зарегистрирован толчок 22 мая в 03^h36^m с h=15 κm , K_P =11.3. Ощутимость толчка составила 3 балла [Прил. 2 а].

Однако наиболее интересно редкое явление интенсивного краткосрочного (за сутки 24 апреля) роя из 25 землетрясений с K_P =8.6–11.4 на юго-западе Таджикской депрессии, возле Колхозабада, включившего три ощутимых толчка одинакового уровня энергии K_P =11.4: в 03^h34^m с I_i =5, в 15^h01^m с I_i =4–5 и в 22^h32^m с I_i =6 баллов. Последний назван Колхозабадским землетрясением и отмечен в агентстве NEIC магнитудой Mw=4.8. Почти равносильный с ним афтершок с K_P =11.2, $Mw_{\rm NEIC}$ =4.4 произошел через 10 минут (в 22^h43^m). Решения механизма очагов этих землетрясений, представленные в табл. 5 из [Прил. 3], свидетельствуют о значительном преобладании напряжений сжатия (PL_P =9–16°< PL_T =71–74°) как в очаге главного толчка в 22^h32^m , так и в очаге последовавшего за ним афтершока, которые при близвертикальном растяжении приводят к взбросовым подвижкам при наклонах DP плоскостей >45° и к надвигам — при DP<45°. В частности, решение механизма очага главного толчка в 22^h32^m указывает на то, что взброс произошел либо по более крутой (DP_1 =56°) плоскости NP1, простирающейся на юг—юго-запад (206°), либо по надвиговой (DP_2 =39°) плоскости NP2, простирающейся близмеридионально (353°), что совпадает с ориентацией Каратаусского разлома (рис. 4 в [1]).

<i>Таблица 5</i> . Параметры механизма оч	гов 24 апреля 2020 г. в 22 $^{ m h}$ 32 $^{ m m}$ с $K_{ m P}$ =11.4 и в 22 $^{ m h}$ 43 $^{ m m}$	c $K_{\rm P}=11.2$

Пото	Дата, t_0 , t	1.			O	си гла	вны	х напр	эжк	ений	F	Іода	льные	плос	кост	ГИ	
, , ,	ι_0 ,	n,	Mw	K_{P}		T		N		P		NP1	!		NP2	?	Агентство
дн. мес. ч мин с	ч мин с	км			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
24.04.	22 32 46.6	11	4.8	11.4	71	163	16	14	9	282	206	56	110	353	39	63	NEIC
24.04.	22 43 16.5	11	4.4	11.2	74	261	3	360	16	90	184	29	95	358	61	87	NEIC

Главный толчок и все события роя детально обследованы сотрудником ИГССС НАНТ Р.У. Джураевым в полевых условиях и описаны в отдельной статье настоящего ежегодника [1] с представлением карты из трех изосейст в 6, 5, 4 балла в сопоставлении с тектоникой эпицентральной зоны. В каталоге [Прил. 2] все толчки роя отмечены специальной меткой «рой».

В Памиро-Гиндукушской зоне (III) с номерами на рис. 3 есть лишь три землетрясения с K_P =÷13, а именно № 1, № 17 и № 21 (табл. 6), случившиеся на севере (в 47 км к востоку от

Джиргаталя), на юге (в 7 км восточнее Хорога) и на юго-востоке (в 37 км к западу от Мургаба), образуя треугольник со сторонами 195 км (Джг–Хрг), 225 км (Хрг–Мрг) и 268 км (Джг–Мрг). Также на рис. 3 заметны два землетрясения с K_P =11.8, возникшие на Памире вдоль Ванч-Акбайтальского разлома (№ 6 на рис. 1) 25 января в $19^{\rm h}55^{\rm m}$, 18 февраля в $07^{\rm h}35^{\rm m}$, и землетрясение такой же энергии 17 ноября в $07^{\rm h}35^{\rm m}$ в табл. 6 у ниспадающей части Дарваз-Заалайского разлома № 5 б (рис. 3), не имеющие ни макроданных, ни механизмов. Остальные толчки с K_P ÷12 лоцированы в основном вне территории Республики. Поэтому ниже описаны лишь землетрясения с K_P ÷13.

	Пото	+	Ги	поцентр				N	Лагнитуд	Įа	
No	Дата, дн. мес. год	t_0 ,		10 E	h,	$K_{ m P}$	MS	Ms	MPSP	m_{b}	Mw
	он. мес. гоо	ч мин с	φ°, N	λ°, E	км		[10]	[14]	[10]	[14]	[13]
1	24.01.2020	07 09 12.70	39.218	71.700	6	13.5	5.3	5.4	5.8	5.6	5.5
17	18.09.2020	17 47 46.00	38.000	73.600	20	13.3	4.6	4.6	5.1	5.0	5.2
21	29.10.2020	09 32 36.40	37.503	71.630	3	12.9	4.2	4.1	5.2	4.9	4.8
	25.01.2020	19 55 58.92	38.651	73.170	9	11.8	_	_	4.3	4.3	_
	18.02.2020	23 07 02.64	38.569	71.860	10	11.8	_	3.7	4.8	4.5	_
	17.11.2020	07 35 18.46	38.137	70.301	12	11.8	4.1	4.0	4.8	4.7	_

Таблица 6. Список землетрясений с K_P ≥11.8 в зоне III

Максимальным по уровню энергии (K_P =13.5) и значению моментной магнитуды (Mw_{GCMT} =5.5) среди всех коровых землетрясений Таджикистана не только в **зоне III**, но и на всей территории, является приповерхностное (h=6 κm) землетрясение под № 1 за 24 января в 07^h09^m , отмеченное вблизи Джиргаталя в межгорном прогибе, огибающем Памир с севера и связанное с зоной восточной части Дарваз-Заалайского разлома № 5 а. С простиранием разлома в этой части хорошо согласуется простирание нодальной плоскости NP2 с (STK_2 =217°) со взбросом под углом DP_2 =56° в табл. 7. Имеются сведения о его ощутимости как в Таджикистане (I_i =3 балла в Рогуне (178 κm), 2 балла в Душанбе (262 κm) [Прил. 2 а]), так и в Узбекистане (I_i =4 балла в Фергане (129 κm), 3 балла — Намангане (158 κm), Андижане (182 κm), Гулистане (189 κm) и др.). Диапазон зоны ощутимости протянулся от Ферганы с Δ =129 κm до Карши с Δ =582 κm [15].

Дата,	t_0 ,	h,	1.6		O	си гла	вны	х напр	эжк	ний	ŀ		льные	плос			
, , ,		l	Mw	$K_{ m P}$		T		N		Ρ		NPI			NP2	?	Агентство
дн. мес.	ч мин с	км			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
24.01.	07 09 12.7	10	5.5	13.5	78	145	4	34	11	303	28	34	83	217	56	95	GCMT
18.09	17 47 46.0	20	5.2	13.3	4	257	81	143	8	348	32	82	-3	123	87	-172	GCMT
29.10	09 32 36.4	3	4.8	12.9	54	85	35	257	4	39	111	51	138	231	58	47	GCMT

Таблица 7. Параметры механизмов очагов землетрясений зоны III из [Прил. 3]

Чуть ниже уровень энергии (K_P =13.3, Mw=5.2) у землетрясения № 17 на Памире за 18 сентября в $17^{\rm h}47^{\rm m}$ на глубине 20 κM (табл. 6). По данным [15], оно ощущалось с I_i =3 балла в Фергане, Андижане, Намангане и с I_i =2 балла в Мургабе и еще в семи городах Узбекистана. Диапазон его ощутимости за счет заглубленности очага до 20 κM достиг в Узбекистане 735 κM (Навои) [Прил. 4]. Исходя из значений $SLIP_1$ =—3° или $SLIP_2$ =—172° в табл. 7, в его очаге реализовался близвертикальный (DP_1 =82°) сдвиг по плоскости NP1 север–северо-восточного простирания (STK_1 =32°), как и по близкой по наклону (DP_2 =87°) плоскости NP2 восток–юго-восточного (STK_2 =123°) простирания.

Третий угол треугольника из землетрясений с K_P =13 возле Хорога (7 κm) образован толчком № 21 с K_P =12.9, Mw=4.8 за 29 октября в $09^{\rm h}32^{\rm m}$ в приповерхностном слое земной коры на глубине 3 κm (табл. 7), сопровождаемым 26 афтершоками на той же глубине. Все афтершоки отмечены в каталоге [Прил. 2]. Интенсивность сотрясений в Хороге составила 4 балла [Прил. 2 а]. Из значений $SLIP_1$ =138°, $SLIP_2$ =47° следует, что в его очаге по двум плоскостям близких наклонов (DP_1 =51°, DP_2 =58°) произошел взбросо-сдвиг по нодальной плоскости NP1 востокого-восточного (STK_1 =111°) простирания, или сдвиго-взброс по нодальной плоскости NP2 юго-западного (STK_1 =231°) простирания (табл. 7).

К заметным на карте эпицентров землетрясениям в зоне III следует отнести два равных по энергии землетрясения с K_P =11.8 в средней части Памира, вдоль близширотного Ванч-Акбайтальского разлома № 6, зарегистрированных в начале года: 25 января в 19^h55^m с ϕ =38.651°, λ =73.170°E и 18 февраля в 13^h08^m с ϕ =38.569°, λ =71.860°E, которые, однако, не отмечены ни по ощутимости, ни в каталоге механизмов очагов.

В Памиро-Гиндукушской зоне (IV) промежуточных землетрясений локализован 6621 толчок с $K_P \ge 8.6$ на глубинах h=70-276 км. На максимальной за 2020 г. глубине $h_{\rm max}=276$ км зарегистрировано слабое землетрясение в Афганской подзоне с $K_P=8.7$, $\phi=36.839^\circ$, $\lambda=70.830^\circ$ Е. Пространственное распределение промежуточных землетрясений представлено на рис. 3. Как видим, основная их часть возникла на территории Афганистана – 4489 из 6621, или ~68 %. Традиционно вся область промежуточных землетрясений подразделяется по плотности гипоцентров на три подзоны: Афганскую ($\phi \le 36.9^\circ$ N), Хорогскую ($\phi = 37.0-37.9^\circ$ N) и Мургабскую ($\phi = 38.0-38.8^\circ$ N). Такое деление целесообразно, так как выделенные зоны характеризуются разным видом распределения землетрясений по глубине [18].

Максимальное по энергии землетрясение в зоне IV под № 11 (рис. 3) произошло 16 июня в $01^{\rm h}30^{\rm m}$ в Хорогской подзоне с $K_{\rm P}$ =14.3, Mw=5.7, ϕ =37.834°, λ =72.015°E на глубине h=134 κM [Прил. 2]. Оно ощущалось с интенсивностью от двух до трех баллов в столицах — Душанбе, Ташкенте, — а также еще в десяти городах Узбекистана на расстояниях от 290 до 616 κM [Прил. 4]. Механизм очага этого землетрясения представлен в [Прил. 3] наибольшим из всех событий числом агентств, вариант GCMT дан в табл. 8. Как видим, плоскость NP1 близка к горизонту (DP_1 =10°) и простирается на север—северо-восток (STK_1 =20°); плоскость NP2 близвертикальна (DP_1 =82°) и простирается на запад—юго-запад (STK_1 =240°). Тип подвижки по первой плоскости — сдвиго-надвиг, по второй — взброс, близкий к взрезу.

Таблица 8. Параметры механизма очага землетрясения 16 июня с K_P =14.3, Mw=5.7, h=134 κM , h_pP =118 κM

Пото	4	1.			Oc	си гла	вны	х напр	жкс	ений	H	Іода	льные	плос	кос	ги	
Дата, <i>дн. мес.</i> ч	t ₀ , ч мин с	п, км	Mw	$K_{\rm P}$		T		N		P		NP			NP2		Агентство
on. succ.	i mun c	ICH			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
16.06	01 30 46.54	134	5.7	14.3	52	158	6	59	37	324	20	10	50	240	82	97	GCMT

Распределение промежуточных землетрясений в трех подзонах по энергетическим классам дано в табл. 9.

Таблица 9. Распределение промежуточных землетрясений по энергетическим классам в пределах Афганской, Хорогской и Мургабской подзон в 2020 г.

Название зоны			K_{P}				Всего
пазвание зоны	9	10	11	12	13	14	Beero
Афганская	3927	453	72	26	11		4489
Хорогская	1744	171	22	16	1	1	1955
Мургабская	143	29	4		1		177
Всего	5814	653	98	42	13	1	6621

Большинство промежуточных землетрясений возникло в Афганской подзоне Гиндукуша (N_{Σ} =4489). Здесь произошло 37 землетрясений с $K_{P} \ge 12$ в диапазоне глубин 70–242 κM , в том числе 5 событий с $K_{P} \ge 13.0$, приведенные в табл. 10.

Таблица 10. Список землетрясений Афганской подзоны с КР≥13.0

N₂	Дата,	t_0 ,	Ι	ипоцентр		I/		Маг	нитуда	
745	дн. мес. год	ч мин с	φ°, N	λ°, E	$h/h_{\rm pP}$, км	$K_{\rm P}$	<i>MS</i> [10]	Ms [14]	MPSP [10]	$m_{\rm b}[14]$
№6	30.03.2020	15 42 33.83	36.8913	70.9037	205/217	13.0	_	4.8	4.9	5.0
№7	09.04.2020	19 51 37.72	36.7985	71.0003	225/224	13.1	_	4.7	4.5	_
№8	28.04.2020	11 15 35.40	36.6975	70.4202	198/198	13.0	_	4.8	4.7	5.0
№ 12	16.06.2020	09 21 38.01	36.8798	70.8398	228/231	13.0	_	5.0	4.9	4.9
№ 19	16.10.2020	10 10 52.16	36.5790	70.9768	221/222	13.0	_	4.8	4.8	5.0
Гинд.	26.10.2015	09 09 40	36.50	70.30	230/217	17.0	6.9	6.9	7.2	7.5

Из них четыре толчка (кроме № 7 с K_P =13.1) были ощутимыми на территории республики, а именно: землетрясение 30 марта ощущалось в Душанбе (263 κ м) с I_i =2 балла, 28 апреля – там же (252 κ м) 2–3 балла, 16 июня – (252 κ м) 2 балла. Последнее в 2020 г. событие в табл. 10, 16 октября, вызвало сотрясения с I_i =2–3 балла не только в Душанбе (293 κ м) [Прил. 2 а], но и с I_i =2 балла в Ташкенте и еще в восьми городах Узбекистана с Δ =336–663 κ м [15]. Максимальный энергетический класс среди землетрясений этой зоны зафиксирован у толчка 9 апреля в 19 h 51 m с K_{max} =13.1, тогда как в 2019 г. у соответствующего максимального землетрясения 20.12.2019 г. был K_{max} =14.8 [6]. Все пять наиболее сильных толчков Афганской подзоны расположены компактно в нижнем ее слое толщиной 30 κ м (в диапазоне h=198–228 κ м) в пределах $\Delta \phi$ =36.579–36.891°N, $\Delta \lambda$ =70.420–71.003°E. Рядом находится и гипоцентр Гиндукушского землетрясения 26.10.2015 г. [19], приведенный в нижней строке табл. 10.

В Хорогской подзоне на глубине 134 км 16 июня в $01^{\rm h}31^{\rm m}$ зарегистрирован детально описанный выше максимальный в каталоге толчок под № 11 с $K_{\rm P}$ =14.3, а также толчок под № 20 с $K_{\rm P}$ =12.8 на глубине 140 км за 18 октября в $06^{\rm h}14^{\rm m}$ (рис. 3).

В Мургабской подзоне отмечено лишь одно землетрясение с K_P ÷13 под № 4 [Прил. 2], произошедшее 18 февраля в 11^h28^m на глубине 100 км с K_P =12.8, ϕ =38.1°N, λ =72.7°, и три толчка с K_P ÷11 (рис. 3).

Заключение. Сейсмичность на территории Таджикистана обусловлена континентальным столкновением Евразийской и Индийской плит в результате субдукции Индийской плиты под Евразийскую. Сейсмические процессы конкретно в 2020 г. в значительной мере связаны с релаксацией напряжений после сильнейшего Гиндукушского землетрясения 26.10.2015 г. с Mw=7.5 [19], которое в [20] связывают с отрывом литосферной плиты в зоне промежуточных землетрясений Гиндукуша. Активное последействие возмущения среды после Гиндукушского землетрясения, наблюдаемое в 2016–2017 гг. [21], сменилось позднее затуханием сейсмического процесса. Движение Индийской плиты на север и ее столкновение с Евразией продолжается, но вызванный им в исследуемом 2020 г. сейсмический процесс в Таджикистане и на прилегающих к нему территориях протекал относительно спокойно. Конкретно в Афганской подзоне промежуточных землетрясений, где произошло катастрофическое Гиндукушское землетрясение, в 2020 г. зарегистрированы лишь четыре события с K_P =13.0 и одно с K_P =13.1, несмотря на большое суммарное число толчков (4489), что свидетельствует о явном заживлении этой очаговой зоны.

Непосредственно внутри государственных границ Таджикистана представляют интерес два обследованных землетрясения с построенными картами изосейст — 6-балльное Колхозабадское землетрясение 24 апреля с K_P =11.4 [1] в юго-западной части Таджикистана и 7-балльное Таджикабадское землетрясение 4 июля с K_P =13.3 [2] в восточной части Таджикистана, в пригребневой части хребта Петра Первого.

В подготовке электронных приложений к данной статье принимали участие: Т.Р. Улубиева, Л.И. Рислинг, Р.С. Михайлова, З.М. Нилобекова, З.С. Маматкулова, Г.Н. Холова, С.Ш. Хакимова, Р.У. Джураев, Н.А. Лукаш, С.Г. Пойгина, Г.М. Бахтиарова.

Электронное приложение App05b_Tadjikistan_2020 (http://www.gsras.ru/zse/app-27.html) включает: 1 — Сейсмические станции Геофизической службы НАН Республики Таджикистан и их параметры в 2020 г.; 2 — Каталог землетрясений Таджикистана и прилегающих территорий за 2020 г.; 2 а — Макросейсмический эффект ощутимых землетрясений Таджикистана в 2020 г. (ГС НАНТ) ($N_{\text{земл}}$ =31); 3 — Каталог механизмов очагов землетрясений Таджикистана за 2020 г.; 4 — Сводные данные о макросейсмическом эффекте ощутимых землетрясений Таджикистана в 2020 году; 5 — Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Таджикистана в 2020 году.

Литература

- 1. Джураев Р.У. Колхозабадское землетрясение 24 апреля 2020 г. с K_P =11.4, Mw_{GCMT} =4.6, I_0 =6 баллов (Таджикистан) // Землетрясения Северной Евразии. 2024. Вып. 27 (2020). С. 301–312. DOI: https://doi.org/10.35540/1818-6254.2024.27.27 EDN: TMGSHG
- 2. Джураев Р.У. Таджикабадское землетрясение 4 июля 2020 г. с Ms=5.2, I_0 =7 балов (Таджикистан) // Землетрясения Северной Евразии. 2024. Вып. 27 (2020). С. 313—322 DOI: https://doi.org/10.35540/1818-6254.2024.27.28 EDN: UMJKTA
- 3. Негматуллаев С.Х. Современная сеть сейсмического мониторинга Таджикистана // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 125–131.

- 4. Улубиева Т.Р. Сейсмические станции Геофизической службы АН Республики Таджикистан в 2014 г. // Землетрясения Северной Евразии. Вып. 23 (2014 г.). Обнинск: ФИЦ ЕГС РАН, 2020. Приложение на CD-ROM.
- 5. Ачилов Г.Ш., Бабаев А.М., Мирзоев К.М., Михайлова Р.С. Сейсмогенные зоны Памира // Геология и геофизика Таджикистана. 1985. № 1. С. 117—138.
- 6. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Сейсмичность Таджикистана и прилегающих территорий в 2018–2019 гг. // Землетрясения Северной Евразии. 2023. Вып. 26 (2018–2019 гг.). С. 111–119. DOI: https://doi.org/10.35540/1818-6254.2023.26.09 EDN: YBJCIU
- 7. Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 8. Каток А.П. Об использовании номограммы Раутиан для энергетической классификации глубоких Памиро-Гиндукушских землетрясений // Магнитуда и энергетическая классификация землетрясений. Т. II. М.: ИФЗ АН СССР, 1974. С. 139–143.
- 9. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9 (176)). М.: ИФЗ АН СССР, 1960. С. 109.
- 10. Сейсмологический бюллетень (сеть телесейсмических станций), 2020. (2024) // ФИЦ ЕГС РАН [сайт]. URL: http://www.gsras.ru/ftp/Teleseismic bulletin/2020
- 11. Storchak D.A., Di Giacomo D., Bondár I., Engdahl E.R., Harris J., Lee W.H.K., Villaseñor A., Bormann P. Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009) // Seismological Research Letters. 2013. V. 84, N 5. P. 810–815.
- 12. Petrova N.V., Gabsatarova I.P. Depth corrections to surface-wave magnitudes for intermediate and deep earth-quakes in the regions of North Eurasia // Journal of Seismology. 2020. V. 24, N 1. P. 203–219. DOI: https://doi.org/10.1007/s10950-019-09900-8
- 13. Global Centroid Moment Tensor (СМТ) Catalog [Сайт]. (2024). URL: http://www.globalcmt.org/CMTsearch.html
- 14. International Seismological Centre (2024). On-line Bulletin. https://doi.org/10.31905/D808B830
- 15. National Earthquake Information Center and Data Center for Seismology, Denver. (2024). URL: http://earthquake.usgs.gov/regional/neic
- 16. Сарыева Г.Ч., Тачов Б., Халаева А.Т., Дурасова И.А., Эсенова А., Халлыева Т., Велиева Г., Чарыева Б., Хрулева О.С., Союнова М. Каталог землетрясений с $K_P > 8.6$ Копетдага за 2020 г. // Землетрясения Северной Евразии. 2024. Вып. 27 (2020). [Электронное приложение]. URL: http://www.gsras.ru/zse/app-27.html
- 17. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии, 2004 год. Обнинск: Γ C PAH, 2010. С. 118–129.
- 18. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии, 2002. -Обнинск: Γ C PAH. 2008. -C. 153-167.
- 19. Михайлова Р.С., Улубиева Т.Р., Петрова Н.В. Гиндукушское землетрясение 26 октября 2015 г. с Mw=7.5, I_0 ~7: предваряющая сейсмичность и афтершоковая последовательность // Землетрясения Северной Евразии. 2021. Вып. 24 (2015 г.). С. 324—339. DOI: https://doi.org/1035540/1818-6254.2021.24.31
- 20. Kufner S.K., Schurr B., Haberland C., Zhang Y., Saul J., Ischuk A., Oimahmadov I. Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction // Earth and Planetary Science Letters. 2017. V. 461. P. 127–140.
- 21. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Сейсмичность Таджикистана и прилегающих территорий в 2016–2017 гг. // Землетрясения Северной Евразии. 2022. Вып. 25 (2016–2017 гг.). С. 108–117. DOI: https://doi.org/10.35540/1818-6254.2022.25.09 EDN: SOANCB

SEISMICITY of TAJIKISTAN and ADJACENT TERRITORIES in 2020 T.R. Ulubieva¹, R.S. Mikhailova², L.I. Risling¹

¹Geophysical Survey of the National Academy of Sciences of the Republic of Tajikistan,
Dushanbe, Tajikistan, tanya_55_08@mail.ru

²Geophysical Survey of the Russian Academy of Sciences, Obninsk, Russia, rm-gs@mail.ru

Abstract. In 2020, seismic monitoring of Tajikistan territory with adjacent regions of several states – Uzbekistan, Kyrgyzstan, China, India, Pakistan, Afghanistan – was carried out by a network of seven digital seismic stations of the Geophysical Servey of the National Academy of Sciences of the Republic of Tajikistan. A total

of 7839 earthquakes were recorded in the energy classes K_R =8.6–14.3, of which 1218 were shallow shocks with h=1–30 km, scattered throughout zones I-II-III, and 6621 earthquakes were located in intermediate depths (70–276 km) of the Pamir-Hindu Kush in zone IV. Thirty-five earthquakes were tangible, two of them (6-point Kolkhozobad earthquake of April 24, 2020 with K_R =11.4, M_{WGCMT} =4.6 and 7-point Tajikabad earthquake of July 4, 2020 with K_R =13.3, M_{WGCMT} =5.4) were surveyed with isoseist maps plotted. The consolidated catalog earthquake focal mechanisms contains 45 events for which 66 solutions have been found. The strongest earthquakes with a focus in the Earth's crust in zone II were grouped in the middle part of the Republic between the South Gissar and Darvaz-Zaalai faults (January 29 with K_R =13.1 (M_W =5.0), May 6 with K_R =13.0 (M_W =5.0), July 4 with K_R =13.3 (M_W =5.4), November 10 with K_R =13.1 (M_W =5.0), and in zone III – in the north of the Pamirs (January 24 with K_R =13.5, M_W =5.6), and in the east (September 18 with K_R =13.3, M_W =5.2). The maximum earthquake from all zones, with K_R =14.3, M_W =5.7 occurred on June 16 at a depth of h=134 km in the Khorog subzone of intermediate earthquakes. In the Afghan subzone the maximum class did not exceed K_R =13.1 (April 9 with h=225 km). For the region as a whole, the largest amount of seismic energy in 2020 was released in zone IV of intermediate earthquakes ($\approx \Sigma E$ =3.756·10¹⁴ J).

Keywords: digital stations, earthquakes in the Earth's crust with h=1-30 km and intermediate, with h=70-276 km, Pamir-Hindu Kush, hearth mechanism, intensity of concussions.

For citation: Ulubieva, T.R., Mikhailova, R.S., & Risling, L.I. (2024). [Seismicity of Tajikistan and adjacent territories in 2020]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 27(2020), 101–113. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2024.27.09 EDN: FOXCPR

References

- 1. Juraev, R.U. (2024). [Kolkhozabad earthquake of April 24, 2020 with *K*_R=11.4, *Mw*_{GCMT}=4.6, *I*₀=6 (Tajikistan)]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *27*(2020), 301–312. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2024.27.27 EDN: TMGSHG
- 2. Juraev, R.U. (2024) [Tadjikabad earthquake of July 4, 2020 with *Ms*=5.2, *I*₀=7 (Tajikistan)]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 27(2020), 313–322. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2024.27.28 EDN: UMJKTA
- 3. Negmatullaev, S.Kh. (2012). [Modern network of seismic monitoring of Tajikistan]. In *Zemletriaseniia Severnoi Evrazii v 2006 godu* [Earthquakes in Northern Eurasia, 2006] (pp. 125–131). Obninsk, Russia: GS RAS Publ. (In Russ.).
- 4. Ulubieva, T.R. (2020). [Seismic stations of the Geophysical Survey, Academy of Sciences of the Republic of Tajikistan, in 2014]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 23(2014). Appendix on CD. (In Russ.).
- 5. Achilov, G.Sh., Babaev, A.M., Mirzoev, K.M., & Mikhailova, R.S. (1985). [Seismogenic zones of the Pamir]. *Geologiia i Geofisika Tadzhikistana* [Geology and Geophysics of Tajikistan], *I*, 117–138. (In Russ.).
- 6. Ulubieva, T.R., Mikhailova, R.S., & Risling, L.I. (2023). [Seismicity of Tajikistan and adjacent territories in 2018–2019]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *26*(2018–2019), 111–119. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2023.26.09 EDN: YBJCIU
- 7. Rautian, T.G. (1964). [On the determination of the energy of earthquakes at a distance of 3000 km]. In *Eksperimental 'naia seismika. Trudy IFZ ANSSSR № 32 (199)* [Experimental seismic. Proceedings of the IFZ SA USSR № 32(199)] (pp. 88–93). Moscow, Nauka Publ. (In Russ.).
- 8. Katok, A.P. (1974). [On the use of the Rautian nomogram for the energy classification of deep Pamir-Hindu Kush earthquakes]. In *Magnituda i energeticheskaia klassifikaziya zemletriaseniy. T. II* [Magnitude and earthquake energy classification. V. II] (pp. 139–143). Moscow, Russia: IFZ AN SSSR Publ. (In Russ.).
- 9. Rautian, T.G. (1960). [Energy of earthquakes]. In *Metody detal'nogo izucheniya seismichnosti (Trudy IFZ AN SSSR, № 9(176))* [Methods of Detail Study of Seismicity] (pp. 75–114). Moscow, Russia: Inst. Fiz. Zemli Akad. Nauk SSSR Publ. (In Russ.).
- 10. GS RAS, Bulletin of Teleseismic Stations, 2020. (2024). Retrieved from http://www.gsras.ru/ftp/Teleseismic_bulletin/2020
- 11. Storchak, D.A., Di Giacomo, D., Bondár, I., Engdahl, E.R., Harris, J., Lee, W.H.K., Villaseñor, A., & Bormann, P. (2013). Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009). Seismological Research Letters, 84(5), 810–815.
- 12. Petrova, N.V., & Gabsatarova, I.P. (2020). Depth corrections to surface-wave magnitudes for intermediate and deep earthquakes in the regions of North Eurasia. *Journal of Seismology*, 24(1), 203–219. DOI: https://doi.org/10.1007/s10950-019-09900-8
- 13. Global Centroid Moment Tensor (CMT) Catalog Search. (2024). Retrieved from http://www.globalcmt.org/CMTsearch.html
- 14. International Seismological Centre (2024). On-line Bulletin. Retrieved from https://doi.org/10.31905/D808B830

- 15. National Earthquake Information Center and Data Center for Seismology, Denver. (2024). Retrieved from http://earthquake.usgs.gov/regional/neic
- 16. Saryeva, G.Ch., Tachov, B., Khalaeva, A.T, Durasova, I.A., Esenova, A., Hallyeva, T., Velieva, G., Charyeva, B., Khruleva, O.S., & Soyunova, M. (2024). [Catalog of Kopetdag earthquakes with *K*_R>8.6 for 2020]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *27*(2020). Electronic supplement. Retrieved from http://www.gsras.ru/zse/app-27.html (In Russ.).
- 17. Ulubieva, T.R., Mikhailova, R.S., & Risling, L.I. (2010). [Tajikistan]. *Zemletriaseniia Severnoi Evrazii* v 2004 godu [Earthquakes in Northern Eurasia, 2004] (pp. 118–129). Obninsk, Russia: GS RAS Publ. (In Russ.).
- 18. Ulubieva, T.R., Mikhailova, R.S., & Risling, L.I. (2008). [Tajikistan]. *Zemletriaseniia Severnoi Evrazii* v 2002 godu [Earthquakes in Northern Eurasia, 2002] (pp. 153–157). Obninsk, Russia: GS RAS Publ. (In Russ.).
- 19. Mikhailova, R.S., Ulubieva, T.R., & Petrova, N.V. (2021). [The Hindu Kush earthquake on October 26, 2015 with *Mw*=7.5, *I*₀~7: prior seismicity and aftershock sequence]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *24*(2015), 103−112. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2021.24.09
- 20. Kufner, S.K., Schurr, B., Haberland, C., Zhang, Y., Saul, J., Ischuk, A., & Oimahmadov, I. (2017). Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction. *Earth and Planetary Science Letters*, 461, 127–140.
- 21. Ulubieva, T.R., Mikhailova, R.S., & Risling, L.I. (2022). [Seismicity of Tajikistan and adjacent territories in 2016–2017]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 25(2016–2017), 108–117. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2022.25.09 EDN: SOANCB