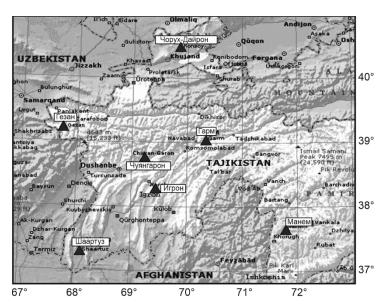
Землетрясения Северной Евразии

2023. – Вып. 26 (2018–2019 гг.). – С. 111–119. DOI: https://doi.org/10.35540/1818-6254.2023.26.09 EDN: YBJCIU *Metadata in English is at the end of the article*

УДК 550.348. (575.3)

СЕЙСМИЧНОСТЬ ТАДЖИКИСТАНА и ПРИЛЕГАЮЩИХ ТЕРРИТОРИЙ в 2018–2019 гг. Т.Р. Улубиева¹, Р.С. Михайлова², Л.И. Рислинг¹

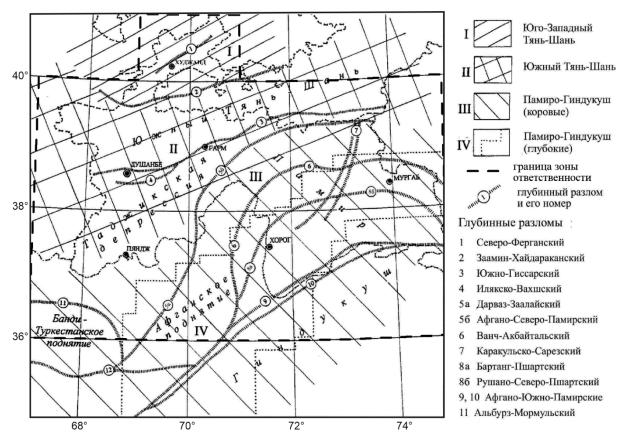

 1 Геофизическая служба Национальной академии наук Таджикистана, г. Душанбе, tanya_ 55_08 @mail.ru 2 ФИЦ ЕГС РАН, г. Обнинск, rm-gs@mail.ru

Аннотация. В 2018—2019 гг. сейсмический мониторинг территории Таджикистана с прилегающими районами нескольких государств осуществлялся сетью из семи цифровых сейсмических станций Геофизической службы НАН Республики Таджикистан. Всего за два года зарегистрировано 17 195 землетрясений в диапазоне энергетических классов K_P =8.6—14.9, из них 2870 — мелкофокусные с h<70 κm , разбросанные по всей территории Юго-Западного Тянь-Шаня (зона I), Южного Тянь-Шаня (II), коровые Памиро-Гиндукуша (III), и 14325 — с промежуточными глубинами h=70—310 κm , локализованные в Памиро-Гиндукушской зоне IV. Ощутимыми были 112 землетрясений, два из них, Сарихосорские, 6-балльное 29 марта 2018 г. с K_P =13.1 и 5—6-балльное 7 марта 2019 г. с K_P =12.1, были обследованы с построением карт изосейст и описаны в отдельной статье данного выпуска журнала. Наиболее сильные (с Mw>6) землетрясения группировались в зоне IV промежуточных глубин очагов Гиндукуша как в 2018 г. (31 января с K_P =14.8, Mw=6.2, h=200 κm и 9 мая с K_P =14.9, Mw=6.3, h=105 κm), так и в 2019 г. (20 декабря с K_P =14.8, Mw=6.2, h=209 κm). Все заметные землетрясения с очагами в земной коре возникли в зоне Южного Тянь-Шаня (II) в системе близширотных Южно-Гиссарского и Илякско-Вахшского глубинных разломов и сопровождались большими сериями афтершоков как в 2018 г. (29 марта с K_P =13.1, $N_{\Sigma,aфr}$ =521; 17 сентября и 5 декабря с K_P =12.0, $N_{\Sigma,adr}$ =59), так и в 2019 г. (7 марта с K_P =12.1, $N_{\Sigma,adr}$ =53).

Ключевые слова: коровые землетрясения, промежуточные землетрясения, Памиро-Гиндукуш, сейсмическая энергия, афтершок, интенсивность сотрясений.

Для цитирования: Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Сейсмичность Таджикистана и прилегающих территорий в 2018-2019 гг. // Землетрясения Северной Евразии. – 2023. – Вып. 26 (2018-2019 гг.). – С. 111-119. DOI: https://doi.org/10.35540/1818-6254.2023.26.09 EDN: YBJCIU

Введение. Регистрация землетрясений в 2018–2019 гг. на территории Таджикистана и соседних стран производилась единой сетью из семи цифровых сейсмических станций Геофизической службы НАН Таджикистана (ГС НАНТ). Создание годовых каталогов сейсмичности с включением разрозненных макросейсмических данных и другие сейсмологические исследования осуществлялись в ГС НАНТ. Макросейсмическое обследование двух Сарихосорских ощутимых землетрясений – 29 марта 2018 г. с K_P =13.1, M_S =5.1, I_0 =6 баллов и 7 марта 2019 г. с K_P =12.1, M_S =4.5, I_0 =5-6 баллов – выполнено другим академическим учреждением – Институтом геологии, сейсмостойкого строительства и сейсмологии (ИГССС НАНТ).



Puc. 1. Сеть цифровых широкополосных сейсмических станций на территории Таджикистана

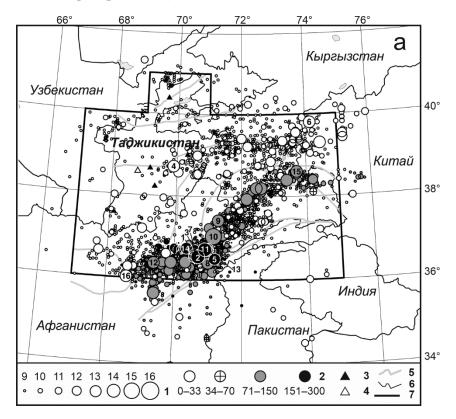
Система наблюдений, как и ранее [1], состояла из семи цифровых широкополосных сейсмических станций Trident+Trillium40: «Чуянгарон», «Гарм», «Гезан», «Игрон», «Шаартуз», «Манем» и «Чорух-Дайрон», координаты и параметры которых приведены в [Прил. 1]. Карта расположения сейсмических станций дана на рис. 1.

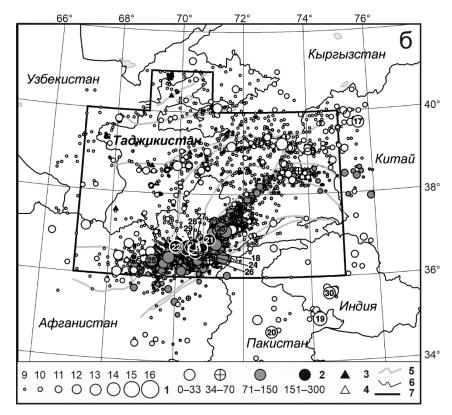
Методика наблюдений. Границы исследуемой территории, заключенной в пределах координат

36–40°N, 67–75°E и 40–41°N, 69–71°E, и схема деления на четыре сейсмоактивные зоны Таджикистана, представленные на рис. 2, не изменились, хотя обработка землетрясений проводилась и вне указанных границ.

Puc. 2. Сейсмоактивные зоны I–IV Таджикистана и глубинные разломы по [2]

Методика обработки цифровых записей землетрясений несколько изменилась. Вся цифровая сейсмическая система работает в режиме TDMA — множественный доступ с временным разделением, т.е. каждая станция вещает в строго определенный промежуток времени. Связь удаленных станций с центральной станцией в г. Душанбе происходит с помощью космического спутника «Intelsat». Передача информации происходит непрерывно в режиме реального времени. С января по апрель 2018 г. для обработки и анализа сейсмических данных использовалось то же программное обеспечение, что и в предыдущие годы [1]: CoreEarhworm — пакет для автоматической обработки землетрясений, включающий в себя программу определения координат гипоцентра Нуроіпverse, где собраны годографы и геологические характеристики региона, и Oracle — базу данных для хранения сейсмической информации и программу для обработки сейсмической информации вручную.


С мая 2018 г. начался переход на автоматизированную интерпретацию основных параметров очагов землетрясений в новой версии обработки по другому программному обеспечению: ApolloServer — программа для сбора и временного хранения сейсмических данных, Apollo Project — программа автоматической обработки, анализа и архивации сейсмических данных. Теперь каждый эпицентр анализируется и включается в каталог с учетом погрешности δt_0 определения времени t_0 в очаге с точностью до 0.01~c; погрешности географических координат толчков (ϕ и λ) δ (в κm) с точностью до $0.1~\kappa m$. Географические координаты землетрясений представлены теперь в каталоге с точностью до 0.001° против 0.01° в прежних каталогах. Кроме того, реализована процедура расчета энергии землетрясений больших магнитуд с M>5.6 по формуле $\log E$ =1.1M+8 из [3] с последующим переходом к расчетному классу $K_{\text{расч.}}$ = $\log E$. Конкретно в качестве магнитуды ped. выбрана Mw_{GCMT} [Прил. 2]. Число землетрясений с Mw_{GCMT} >5.6 в 2018—2019 гг. оказалось равным 5. Они представлены в табл. 1 с исходными и пересчетными значениями классов.


Таблица 1. Список землетрясений с *Mw*_{GCMT} >5.6 в 2018–2019 гг.

№	Дата дн мес год	t ₀ ч мин с	φ°, N	λ°, E	h, км	$K_{ m P}$	$Mw_{ m GCMT}$	$K_{ m pac ext{ u}.}$
1	31.01.2018	07 07 00	36.550	70.700	200	14.4	6.2	14.8
2	09.05.2018	10 41 45.16	37.038	71.154	105	15.1	6.3	14.9
3	02.02.2019	12 04 33.98	36.608	70.571	210	14.1	5.7	14.3
4	08.08.2019	00 45 26.45	36.718	69.989	227	14.4	5.9	14.5
5	20.12.2019	11 39 52.63	36.701	70.342	209	14.8	6.2	14.8

Каталоги землетрясений и карты эпицентров за 2018–2019 гг. В результате сводной обработки составлен каталог землетрясений Таджикистана и прилегающих к нему районов Узбекистана, Кыргызстана, Китая — на севере, Афганистана, Пакистана, Индии — на юге [Прил. 2]. В них из бюллетеней [4, 5] традиционно включены значения магнитуд по поверхностным (MS, Ms), объемным (MPSP, mb) волнам и моментная (Mw) магнитуда вместе с сейсмическим моментом M_0 . В макросейсмическом каталоге [Прил. 3] собраны сведения об ощутимости 112 землетрясений из регионального каталога [Прил. 2], данных из сейсмологического бюллетеня ФИЦ ЕГС РАН [5], каталога USGS [6], результатов макросейсмических обследований ИГССС НАНТ Сарихосорских землетрясений 29 марта 2018 г. и 7 марта 2019 г. [7]. Общее число сотрясенных в 2018—2019 гг. населенных пунктов составило 213, о которых в ped. собраны краткие сведения, включенные в [Прил. 4]. В каталоге механизмов очагов, созданном в ped., содержится 61 землетрясение [Прил. 5], для которых в [4] найдены 108 решений параметров механизмов очагов от разных агентств (GCMT, NEIC, GFZ, IPGP, ISC).

Итоговый каталог Таджикистана за 2018–2019 гг. содержит 17195 землетрясений в диапазоне K_P =8.6–14.9, из них 14325 — глубокофокусные Памиро-Гиндукушские землетрясения с $h \ge 70~\kappa M$ и 2870 — мелкофокусные толчки с $h < 70~\kappa M$, разбросанные по всей территории. Минимальная глубина гипоцентра $h=1~\kappa M$ присвоена 212 землетрясениям с K_P =9–12, а максимальная — h=310 κM — характеризует землетрясение 18 августа 2018 г. в 13^h 08 m с K_P =8.7, локализованное в мантии, в пределах Афганской подзоны глубоких очагов. Суммарная энергия всех землетрясений, выделившаяся в их очагах, равна ΣE =3.35·10 $^{15}~\mathcal{Д}$ ж. Наиболее заметные ($K_P \ge 13.0$) события за 2018–2019 гг., число которых составило N=16 за 2018 г. и N=14 за 2019 г., пронумерованы на годовых картах эпицентров (рис. 3 а, б).

Рис. 3. Карта эпицентров землетрясений Таджикистана и прилегающих территорий с K_P ≥8.6 за 2018 г. (а) и 2019 г. (б)

1 — энергетический класс K_P ; 2 — глубина гипоцентра h, κm ; 3 — цифровая сейсмическая станция; 4 — центр сбора и обработки данных цифровых станций в Душанбе; 5 — глубинный разлом I-го порядка по [2]; 6 — государственная граница; 7 — граница зоны ответственности.

Максимальный энергетический класс для коровых землетрясений в каталоге составил $K_P=13.6$, $Mw_{GCMT}=5.3$. Землетрясение такой величины (19 на рис. 3 б) зарегистрировано 5 февраля 2019 г. в $16^{\rm h}47^{\rm m}$ с h=10 км вне границ Таджикистана, на границе Индии и Пакистана. Для глубокофокусных землетрясений максимальный класс составил $K_P=14.9$, $Mw_{GCMT}=6.3$, h=105 км. Землетрясение такой силы (10 на рис. 3 а) зарегистрировано 9 мая 2018 г. в $10^{\rm h}41^{\rm m}$ и ощущалось на территории Таджикистана до 5 баллов в Хороге (62 км), Ишкашиме (54 км), Курган-Тюбе (226 км); 4-5 баллов – в Душанбе (268 км); 3 балла – в Худжанте (384 км). В табл. 2 дано распределение землетрясений по энергетическим классам и суммарной сейсмической энергии.

Таблица 2. Распределение числа землетрясений 2018 - 2019 гг. по энергетическим классам K_P и суммарной сейсмической энергии ΣE по сейсмоактивным зонам I–IV

№	Γ	$K_{ m P}$								
зоны	Год	9	10	11	12	13	14	15	N_{Σ}	ΣE , Дж
I	2018	61	3	2	_	_	_	_	66	$1.44 \cdot 10^{12}$
	2019	71	9	2	1				83	
	Всего	132	12	4	1				149	
II	2018	308	64	11	5	2	_	_	390	$5.75 \cdot 10^{13}$
	2019	321	47	9	1	1			379	
	Всего	631	111	20	6	3			769	
III	2018	805	102	30	12	2		_	951	$1.37 \cdot 10^{14}$
	2019	841	122	25	9	3	1		1001	
	Всего	1646	224	55	21	5	1		1952	
IV	2018	6281	735	82	34	18	2	1	7153	$3.15 \cdot 10^{15}$
	2019	6328	678	109	38	16	2	1	7172	
	Всего	12609	1413	191	72	34	4	2	14325	
I–IV	2018–2019	15016	1760	270	100	42	5	2	17195	3.35·10 ¹⁵

По сравнению с периодом 2016—2017 гг. [1], произошло уменьшение числа землетрясений в зонах I, II и III (149, 769 и 1952 вместо 178, 829 и 3875) и увеличение — в зоне IV (14325 вместо 12973).

Рассмотрим детально сейсмичность в каждой из зон I–IV.

На территории **Юго-Западного Тянь-Шаня** (**I**) выделившаяся за два года сейсмическая энергия, равная $1.44\cdot 10^{12}\, \text{Дж}$ (табл. 2), традиционно минимальна из 4-х зон. Число зарегистрированных здесь в 2018 г. и в 2019 г. землетрясений с K_P ≥8.6 составило 66 и 83, против 102 и 76 в 2016 г. и 2017 г. [1] соответственно. Максимальным, с K_P =11.9, явилось землетрясение за 16 июля 2019 г. в $10^{\rm h}45^{\rm m}$ с ϕ =40.11°N, λ =71.16°E, h=10 κM [Прил. 2]. Согласно приведенной выше схеме разломов (рис. 2) исследуемой территории, оно приурочено непосредственно к Заамин-Хайдараканскому разлому (№ 2) в его северо-восточной части.

Максимальный уровень энергии на территории **Южного Тянь-Шаня** (II) – соответствует землетрясениям тринадцатого класса. Такие землетрясения зарегистрированы 29 марта 2018 г. в $22^{h}54^{m}$ с $K_{P}=13.1$ (4 на рис. 3 а), 3 апреля 2018 г. в $08^{h}14^{m}$ с $K_{P}=13.2$ (6 на рис. 3 а) и 12 января 2019 г. в $04^{h}32^{m}$, $K_{P}=13.3$ (17 на рис. 3 б) [Прил. 2]. Эпицентры последних двух событий расположены вне границ Республики, поэтому преимущество в детальном рассмотрении за первым из них, которое возникло в наиболее активной в 2018-2019 гг. северо-восточной части Таджикской депрессии, вдоль Южно-Гиссарского (№ 3) и Илякско-Вахшского (№ 4) разломов на рис. 2. Здесь, в пределах Вахшского надвига, в $18.5 \, \kappa M$ к востоку от г. Рогуна, $29 \, \text{марта в} \, 22^{\text{h}} 54^{\text{m}}$ возникло землетрясение (4 на рис. 3 а) с K_P =13.1, ϕ =38.72°N, λ =69.89°E, I_0 =6, обследованное ИГССС НАНТ и описанное в отдельной статье [7] настоящего выпуска журнала. Очаг находился на глубине 5 км в восточной ветви Илякско-Вахшского глубинного разлома, в 15 км восточнее акватории будущего Рогунского водохранилища. В Рогуне ($\Delta_{\text{мкр}}$ =19 км) его ощущали с I_i =4–5 баллов, в Душанбе $(\Delta_{\text{мкр}}=102 \text{ км}) - 2-3 \text{ балла.}$ Это землетрясение сопровождалось громадной $(N_{\Sigma}=521)$ серией афтершоков, наиболее сильные из которых, с K_P =11.6 и 11.4, случились вскоре после главного толчка – через полчаса (29 марта в 23^h24^m) и через два часа (30 марта в 02^h10^m) на расстоянии 16 и 14 κM от Рогуна с I_i =3 балла [Прил. 3]. Согласно фондовому каталогу слабых землетрясений Душанбино-Вахшского района [8], до конца марта месяца, т.е. всего лишь за двое суток, здесь зарегистрировано 125 повторных толчков с K_P =6.0–11.6 и еще 396 толчков с K_P =5.7–10.4 – до конца года [Прил. 6]. Это уже, собственно, не длинная серия афтершоков после среднего по энергии (K_P =13.1) главного толчка, а неравновесное состояние значительного объема Вахшского хребта, приведшее, в том числе, к новой серии из 53 афтершоков с K_P =5.2–9.5 [Прил. 7] после землетрясения 7 марта 2019 г. с K_P =12.1, в 7 км от предыдущего (ϕ =38.67°N, λ =69.94°E). Оно также обследовано и описано [7]. Этот очаг находился глубже ($h=15~\kappa M$), в средней части гранитного слоя земной коры. Эпицентральная зона землетрясения лежит на северо-западном склоне Вахшского хребта, на террасах левого берега Верхнего Вахша и в непосредственной близости от разломов, Илякско-Вахшского (№ 4) и Южно-Гиссарского (№ 3). Согласно [7], увеличение сейсмической активности данного района может быть связано с началом заполнения в 2016-2017 гг. водохранилища строящейся Рогунской ГЭС, в 13–18 км западнее эпицентров землетрясений 29 марта 2018 г. и 7 марта 2019 года.

Далее на восток, на территории между Южно-Гиссарским (№ 3) и Дарваз-Заалайским (№ 5 а) разломами, на глубине $20~\kappa M$ зафиксирован толчок 12 января $2018~\Gamma$. в $03^{\rm h}40^{\rm m}$ с $K_{\rm P}{=}11.9$, $\phi{=}38.57^{\rm o}{\rm N}$, $\lambda{=}70.04^{\rm o}{\rm E}$. Его эпицентр расположен в $18~\kappa M$ север—северо-восточнее Сарихосора и в $29~\kappa M$ северо-восточнее Рогуна. Оно ощущалось в Рогуне и Дарбанде с $I_{\rm i}{=}4$ балла; в Новобаде $3{-}4$ балла и в г. Душанбе $2{-}3$ балла. В районе Сангвор, в $21{-}23~\kappa M$ к юго-востоку от Тавильдары, отмечены два ощутимых толчка с $K_{\rm P}{=}12.0$, зафиксированные в $2018~\Gamma$.: 17 сентября в $19^{\rm h}00^{\rm m}$ и 5 декабря в $15^{\rm h}18^{\rm m}$ [Прил. 3]. Очаги этих толчков, расположенные на глубине $9{-}13~\kappa M$, связаны с центральной частью Дарваз-Заалайского разлома. Согласно [Прил. 8], они сопровождались афтершоками – $N_{\Sigma}{=}45~\rm u$ 14 соответственно. Можно отметить землетрясение с $K_{\rm P}{=}11.7$, зарегистрированное $30~\rm and 2018~\Gamma$. в $12^{\rm h}57^{\rm m}$ на глубине $h{=}10~\kappa M$ в зоне сближения Южно-Гиссарского и Дарваз-Заалайского разломов, в $22~\kappa M$ юго-восточнее Гарма, вызвавшее там колебания с $I_{\rm i}{=}3{-}4$ балла.

В 2019 г. зона Илякско-Вахшского разлома (№ 4) четко трассируется к востоку эпицентрами семи ощутимых землетрясений с K_P =9.0–11.1, I_i от 2 до 3–4 баллов. По их эпицентрам (22.01 в 04^h33^m , 20.02 в 01^h27^m и 01^h35^m , 27.02 в 10^h25^m и 10^h27^m , 30.05 в 08^h57^m , 16.12 в 01^h44^m [Прил. 2, 3])

довольно определенно выделяется западная ветвь Илякско-Вахшского разлома на отрезке 23 κm . Очаги толчков находились в 6–20 κm от г. Душанбе на глубине 7–19 κm . Всего за два года на территории Душанбино-Вахшского района отмечено 27 ощутимых землетрясений.

На юге Таджикской депрессии, в непосредственной близости от г. Куляб, примерно в 3– $11~\kappa M$, в $2018~\Gamma$., 26~ марта в $10^{\rm h}25^{\rm m}$ и 30~ декабря в $10^{\rm h}02^{\rm m}$, зарегистрированы два толчка с $K_{\rm P}$ =10.1~ и 11.1~ на глубинах 10~ и 22~ κM . Интенсивность сотрясений в г. Куляб составила 3~ и 3–4~ балла соответственно [Прил. 3].

В Памиро-Гиндукушской зоне (III) максимальный энергетический класс составил $K_P=13.6$. Землетрясение такой величины зарегистрировано вне границ Таджикистана (19 на рис. 3 б) 5 февраля 2019 г. в $16^{\rm h}47^{\rm m}$, глубина очага h=10 км [Прил. 2]. В этой же области отмечены по два толчка с $K_P=13$ и с $K_P=12$. Но предпочтительнее рассмотреть ближние области Памира и Банди-Туркестана.

На Северном Памире 2 июня 2018 г. в $08^{\rm h}45^{\rm m}$ и 1 июля 2019 г. в $01^{\rm h}14^{\rm m}$ возникли землетрясения с $K_{\rm P}$ =12.1 и 12.4. Второе из них ощущалось в пгт Джиргаталь (36 км) с $I_{\rm i}$ =2−3 балла. Эпицентры находились к северо-востоку и к юго-востоку от пгт Джиргаталь в восточной части Дарваз-Заалайского разлома (№ 5 а). В восточной части Северного Памира 6 мая 2018 г. в $03^{\rm h}17^{\rm m}$ и 29 апреля 2019 г. в $00^{\rm h}23^{\rm m}$ зафиксированы землетрясения с $K_{\rm P}$ =12.4 и 12.9. Их очаги с h=26 и 10 км связаны с северной оконечностью Каракульско-Сарезского (№ 7) разлома.

В северной части <u>Южного Памира</u>, в 17 κm к югу от оз. Сарез, 22 марта 2018 г. в $21^{\rm h}32^{\rm m}$ зафиксирован сейсмический толчок с $K_{\rm P}$ =9.5, $I_{\rm i}$ =3 балла, приуроченный к зоне пересечения южной части Каракульско-Сарезского (№ 7) и центральной части Бартанг-Пшартского (№ 8 а) разломов. В юго-западной части Южного Памира зарегистрировано событие 24 ноября 2019 г. в $02^{\rm h}10^{\rm m}$ с $K_{\rm P}$ =12.5, h=4 κm , с небольшим количеством афтершоков. Его эпицентр находился в 39 κm к юго-востоку от г. Хорог, где интенсивность сотрясений достигла 3 баллов. В северозападной части Южного Памира 13 декабря 2018 г. в $13^{\rm h}20^{\rm m}$ зарегистрировано землетрясение с $K_{\rm P}$ =11.5, k=7 κm . Эпицентр этого очага, приуроченный к южному склону центральной части Рушанского хребта в зоне Рушано-Северо-Пшартского разлома (№ 8 б), расположен в 35 κm к юговостоку от Рушана и в 43 κm к северо-востоку от Хорога, где интенсивность сотрясений достигала 3–4 баллов. Юго-восточнее Мургаба (в 22 κm) 15 января 2018 г. отмечено землетрясение с $K_{\rm P}$ =11.4, k=60 κm , вызвавшее в нем сотрясения с $I_{\rm F}$ =3–4 балла [Прил. 3].

В 2018 г. в зоне <u>Банди-Туркестанского поднятия</u> зарегистрирован один толчок с K_P =13.0 (28 ноября в 14^h44^m, 16 на рис. 3 а) и два с K_P =12.4 и 11.6 (16 и 25 ноября в 04^h48^m и 06^h28^m соответственно). Все они расположены в зоне Альбурз-Мормульского разлома (№ 11), причем землетрясение 16 ноября с h=9 κM приурочено к западной его части, а другие два, с h=13 и 28 κM , — к юго-восточному окончанию. В 2019 г. в <u>Афганской депрессии</u>, в области сближения Банди-Туркестанского поднятия и западных отрогов Гиндукуша, между Альбурз-Мормульским (№ 11) и Афгано-Северопамирскими разломами (№№ 9, 10), сосредоточены четыре землетрясения с K_P =12(±0.5): 4 мая в 05^h53^m с K_P =12.5, h=27 κM ; 26 июля в 13^h00^m с K_P =11.8, h=23 κM ; 22 сентября в 05^h02^m с K_P =12.5, h=15 κM ; 3 декабря в 06^h06^m с K_P =11.7, h=20 κM . На территории Таджикистана ощущалось лишь последнее из них в Шаартузе (Δ =80 κM) с I_i =2–3 балла, а также в Афганистане (Мазари Шериф, 28 κM) и Туркменистане (Магданлы, 131 κM) с I_i =2–3 балла [Прил. 3].

Памиро-Гиндукушская зона (IV). Сейсмичность этой зоны обусловлена континентальным столкновением Индийской и Евразийской тектонических плит, которые сходятся с относительной скоростью 40–50 κ в год [9]. Субдукция Индийской плиты под Евразийскую вызывает многочисленные землетрясения и делает этот район одним из наиболее сейсмически опасных на Земле. В 2018–2019 гг. в этой зоне локализовано 14325 землетрясений с K_P ≥8.6 с суммарной энергией ΣE = $3.15 \cdot 10^{15}$ μ с на промежуточных глубинах κ в пределах Северного Афганистана (κ отмечена для землетрясения κ в августа κ в пределах Северного Афганистана (κ отмечена для землетрясения κ в августа κ в пределах Северного Афганистана (κ отмечена κ отмечена для землетрясения κ в августа κ в пределах Северного Афганистана (κ отмечена κ отмечена для землетрясения κ отмечена κ в пределах Северного Афганистана (κ отмечена κ о

ориентированным разворотом при λ =74.5°E (рис. 3 а, 3 б). Разделим всю область промежуточных землетрясений, как и ранее [1], на три подзоны: Афганскую ($\phi \le 36.9$ °N), Хорогскую ($36.9 < \phi \le 37.9$ °N) и Мургабскую ($37.9 < \phi \le 38.8$ °N) (табл. 3). Такое деление целесообразно, так как они характеризуются разным видом ориентации эпицентрального поля очагов и распределения их по глубине.

Название зоны	Энергетический класс K_P							K _P ≥10	Всего	ΣF Π_{240}
11азвание зоны	9	10	11	12	13	14	15	<i>1</i> 10 × 10 × 10	DCCIO	ΣΕ, Дж
Афганская	7670	940	119	49	25	3	2	1138	8804	2.18.1015
Хорогская	4550	416	57	20	4	_	1	498	5049	9.13.1014
Мургабская	388	58	15	3	5	_	_	81	471	$5.86 \cdot 10^{13}$
Всего	12608	1414	191	72	34	3	3	1717	14324	$3.15 \cdot 10^{15}$

Таблица 3. Распределение промежуточных (*h*=70−310 км) землетрясений по энергетическим классам в пределах Афганской, Хорогской и Мургабской подзон в 2018 −2019 гг.

Как видно из табл. 3, большинство промежуточных землетрясений возникло в <u>Афганской подзоне</u> Гиндукуша, где произошло 81 землетрясение с $K_P \ge 12$ в диапазоне глубин 100–270 км. Максимальный класс землетрясений этой зоны $K_{\text{расч.}}=14.8$ при $Mw_{\text{GCMT}}=6.2$. Такой величины событие (29 на рис. 3 б) произошло в конце рассматриваемого промежутка времени (20 декабря 2019 г.) в западных отрогах Северного Гиндукуша на глубине h=209 км. В столице Душанбе, на эпицентральном расстоянии $\Delta=249$ км (гипоцентральном – 325 км), интенсивность сотрясений равна 4 баллам, в Ташкенте ($\Delta=517$ км/557 км) – 3 баллам. Землетрясений четырнадцатого класса здесь зарегистрировано по два в каждом году, в очень узкой (0.17°) широтной полосе, вытянутой почти на градус, с $\lambda=69.99-70.90$ °E, а именно: в 2018 г. – 31 января в $07^{\text{h}}07^{\text{m}}$ с $K_P=14.4$, $h=200(201_{\text{pP}})$ км (2 на рис. 3 а) и 10 мая в $14^{\text{h}}08^{\text{m}}$ с $K_P=13.7$, $h=193(200_{\text{pP}})$ км (11 на рис. 3 а); в 2019 г. – 2 февраля в $12^{\text{h}}04^{\text{m}}$ с $K_P=14.1$, $h=210(219_{\text{pP}})$ км (18 на рис. 3 б) и 8 августа в $00^{\text{h}}45^{\text{m}}$ с $K_P=14.4$, $h=227(226_{\text{pP}})$ км (22 на рис. 3 б) [Прил. 2]. Все четыре землетрясения потрясли всю Республику до Гарма, Рогуна и Душанбе с I_{i} от 3–4-х до 2–3-х баллов [Прил. 3]. Отметим, в качестве положительного момента в региональной обработке землетрясений, что значения глубин h_{H} этих очагов, приведенных в [Прил. 2], близки к h_{pP} из бюллетеня ISC [4].

В диагонально ориентированной <u>Хорогской подзоне</u>, в 70 км к юго-западу от Хорога, 9 мая 2018 г. произошло землетрясение (10 на рис. 3 а) с h=105 км и максимальной за два года магнитудой $Mw_{\rm GCMT}$ =6.3 ($K_{\rm pacq}$ =14.9) (табл. 1). Как упомянуто выше, оно ощущалось с интенсивностью от 5 до 2 баллов на большей части территории Таджикистана (10 пунктов), а также в Пакистане (23 пункта), Индии (17), Афганистане (13), Казахстане (2), Узбекистане (2), Туркменистане (1). Интересным оказалось сопровождение этого толчка последовавшим через сутки, 10 мая в $14^{\rm h}08^{\rm m}$, более глубоким (h=193 км) афтершоком с $K_{\rm P}$ =13.7 (11 на рис. 3 а), ощущавшимся так же, как и главный толчок, в Таджикистане, Пакистане, Афганистане, Индии и Узбекистане, с меньшей, конечно, интенсивностью, от 3 до 2 баллов [Прил. 3].

В Мургабской подзоне широтного простирания в 2018 г. возникло одно наиболее сильное землетрясение с K_P =13.5 и четыре заметных с K_P =12.7 [Прил. 2]: с K_P =13.5 – 19 октября в 13^h25^m на глубине h=140 κ M (15 на рис. 3 а), а остальные, последовательно, 9 января в 00^h05^m с h=120 κ M, 6 февраля в 21^h53^m с h=110 κ M, 12 июля в 19^h46^m с h=130 κ M и 9 октября в 00^h49^m с h=142 κ M (рис. 3 а). В 2019 г. максимальным было землетрясение 4 февраля в 06^h12^m с h=130 κ M, K_P =12.0 (рис. 3 б). Три события 2018 г. ощущались в населенных пунктах Таджикистана: 19 октября – в Душанбе с интенсивностью 2–3 балла; 9 января – 2 балла в Ванче, 6 февраля – 3 балла в Душанбе, Ванче и Хороге [Прил. 3].

Заключение. Движение Индийской плиты на север и ее столкновение с Евразией продолжается, но вызванный им в исследуемые два года сейсмический процесс в Таджикистане и на прилегающих к нему территориях протекал относительно спокойно. В зоне IV промежуточных землетрясений, где $26.10.2015~\mathrm{\Gamma}$. произошло катастрофическое Гиндукушское землетрясение с Mw=7.5 [10], связанное с отрывом и опусканием Гиндукушской плиты [11, 12], в 2018– $2019~\mathrm{\Gamma}$ г. сильных землетрясений с Mw÷7 не было, несмотря на большое суммарное число толчков (14325), что свидетельствует о некотором заживлении этой очаговой зоны.

Непосредственно внутри государственных границ самыми заметными были 6-балльное Сарихосорское-I землетрясение 29 марта 2018 г., K_P =13.1 [7] в Душанбино-Гармском районе Таджикистана, вызвавшее мощную серию афтершоков (N_{Σ} =521), а также, через год, более слабое

Сарихосорское-II землетрясение 7 марта 2019 г. с K_P =12.1, I_0 =5–6 баллов с небольшой афтершоковой серией (N_{Σ} =53). Не исключено, что наблюдаемое увеличение сейсмической активности связано, как считает автор [7], с началом заполнения в 2016–2017 гг. водохранилища Рогунской ГЭС, строящейся в 13–18 κM западнее эпицентров Сарихосорских землетрясений.

В подготовке электронных приложений к данной статье принимали участие: Т.Р. Улубиева, Л.И. Рислинг, Р.С. Михайлова, З.М. Нилобекова, З.С. Маматкулова, Г.Н. Холова, С.Ш. Хакимова, Р.У. Джураев, Н.А. Лукаш, С.Г. Пойгина, Г.М. Бахтиарова.

Электронное приложение App05b_Tadjikistan_2018–2019 (http://www.gsras.ru/zse/app-26.html): 1- Сейсмические станции Геофизической службы HAH Республики Таджикистан в 2018–2019 гг.; 2- Каталог землетрясений Таджикистана за 2018–2019 гг.; 3- Макросейсмический эффект ощутимых землетрясений Таджикистана в 2018–2019 гг.; 4- Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Таджикистана за 2018–2019 гг.; 5- Каталог механизмов очагов землетрясений Таджикистана за 2018–2019 гг.; 6- Афтершоки землетрясения 29 марта 2018 г. с K_P =13.1 (N_Σ =53); 7- Афтершоки землетрясения 7 марта 2019 г. с K_P =12.1 (N_Σ =53); 8- Афтершоки землетрясений 17 сентября и 5 декабря 2018 г. с K_P =12.0.

Литература

- 1. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Сейсмичность Таджикистана и прилегающих территорий в 2016—2017 гг. // Землетрясения Северной Евразии. 2022. Вып. 25 (2016—2017 гг.). С. 108—117. DOI: https://doi.org/10.35540/1818-6254.2022.25.09. EDN: SOANCB
- 2. Ачилов Г.Ш., Бабаев А.М., Мирзоев К.М., Михайлова Р.С. Сейсмогенные зоны Памира // Геология и геофизика Таджикистана Душанбе: Дониш, 1985. № 1. С. 117–138.
- 3. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9 (176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 4. International Seismological Centre. (2023). On-line Bulletin. https://doi.org/10.31905/D808B830
- 5. Сейсмологический бюллетень (сеть телесейсмических станций), 2018–2019. (2023) // ФИЦ ЕГС РАН [сайт]. URL: http://www.gsras.ru/ftp/Teleseismic_bulletin/2019/
- 6. Search Earthquake Catalog. (2023) // USGS [Site]. URL: https://earthquake.usgs.gov/earthquakes/search/
- 7. Джураев Р.У. Сарихосорские землетрясения 29 марта 2018 г. с K_P =13.1, Ms=5.1 I_0 =6 и 7 марта 2019 г. с K_P =12.1, MS=4.1, I_0 =5-6 (Таджикистан) // Землетрясения Северной Евразии. 2023. Вып. 26 (2018—2019 гг.). С. 273–282. DOI: https://doi.org/10.35540/1818-6254.2023.26.24 EDN: GRJLGX
- 8. Улубиева Т.Р. и др. Каталог (оригинал) землетрясений Душанбино-Вахшского района за 2018, 2019 гг. Душанбе: Фонды ГС НАНТ, 2019.
- 9. Hayes G.P., Myers E.K., Dewey J.W., Briggs R.W., Earle P.S., Benz H.M., Smoczyk G.M., Flamme H.E., Barnhart W.D., Gold R.D., Furlong K.P. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015 // US Geological Survey. 2017. N 2016–1192. 148 p.
- 10. Михайлова Р.С., Улубиева Т.Р., Петрова Н.В. Гиндукушское землетрясение 26 октября 2015 г. с Mw=7.5, I_0 ~7: предшествующая сейсмичность и афтершоковая последовательность // Землетрясения Северной Евразии. 2021. Вып. 24 (2015 г.). С. 324—339. DOI: https://doi.org/1035540/1818-6254.2021.24.31
- 11. Kufner, S.K., Schurr, B., Haberland, C., Zhang, Y., Saul, J., Ischuk, A., Oimahmadov, I. Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction // Earth and Planetary Science Letters. 2017. V. 461. P. 127–140.
- 12. Kufner, S.K., Kakar, N., Bezada, M., Bloch, W., Metzger, S., Yuan, X., ... Schurr, B. (2021). The Hindu Kush slab break-off as revealed by deep structure and crustal deformation // Nature communications. 2021. V. 12, N 1. P. 1–11.

SEISMICITY of TAJIKISTAN and ADJACENT TERRITORIES in 2018–2019 T.R. Ulubieva¹, R.S. Mikhailova², L.I. Risling¹

¹Geophysical Survey of the National Academy of Sciences of Tajikistan,
Dushanbe, Tajikistan, tanya_55_08@mail.ru

²Geophysical Survey of the Russian Academy of Sciences, Obninsk, Russia, rm-gs@mail.ru

Abstract. In 2018–2019, seismic monitoring of the territory of Tajikistan with adjacent areas of several states was carried out by a network of 7 digital seismic stations of the Geophysical Servey of the National Academy

of Sciences of Tajikistan. For two years, 17195 earthquakes with energy classes $K_R=8.6-14.9$ were registered. Among them 2870 were small–focus (h<70 km), scattered throughout the Southwestern Tien Shan (zone I), Southern Tien Shan (II), the crustal Pamir-Hindu Kush (III), and 14325 – with intermediate depths h=70–310 km, localized in the Pamir-Hindu Kush zone IV. 112 earthquakes were tangible, two of them, Sarikhosor earthquakes of March 29, 2018 with K_R =13.1, I_0 =6 and of March 7, 2019 with K_R =12.1, I_0 =5–6, were surveyed with the construction of isoseist maps and described in a separate article of this issue of the journal. The strongest (Mw>6) earthquakes were grouped in zone IV of Hindu Kush earthquakes with intermediate depths both in 2018 (January 31 with K_R =14.8, Mw=6.2, h=200 km and May 9 with K_R =14.9, Mw=6.3, h=105 km) and in 2019 (December 20 with K_R =14.8, Mw=6.2, h=209 km). All notable earthquakes with foci in the Earth's crust occurred in the Southern Tien Shan zone (II) and associated with a system of near-latitudinal South-Hissar and Ilak-Vakhsh deep faults. Among them the earthquakes occurred in 2018 (March 29 with K_R =13.1, $N_{\Sigma,a\phi r}$ =521; September 17 and December 5 with K_R =12.0, $N_{\Sigma,aft}$ =59) and in 2019 (March 7, K_R =12.1, $N_{\Sigma,aft}$ =53), which were accompanied by large series of aftershocks.

Keywords: crustal earthquakes, intermediate earthquakes, Pamir-Hindu Kush, seismic energy, aftershock, intensity of concussions.

For citation: Ulubieva, T.R., Mikhailova, R.S., & Riesling, L.I. (2023). [Seismicity of Tajikistan and adjacent territories in 2018–2019]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 26(2018–2019), 111–119. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2023.26.09 EDN: YBJCIU

References

- 1. Ulubieva, T.R., Mikhailova, R.S., & Risling, L.I. (2022). [Seismicity of Tajikistan and adjacent territories in 2016–2017]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 25(2016–2017), 108–117. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2022.25.09. EDN: SOANCB
- 2. Achilov, G.Sh., Babaev, A.M., Mirzoev, K.M., & Mikhailova, R.S. (1985). [Seismic zones of Pamir]. In *Geologiya and Geofisika of Tajikistan* [Geology and Geophysics of Tajikistan] (pp. 117–138). Dushanbe, Tajikistan: Donish Publ. (In Russ.).
- 3. Rautian, T.G. (1960). [Energy of earthquakes]. In *Metody detal'nogo izucheniya seismichnosti (Trudy IFZ AN SSSR, № 9(176))* [Methods of Detail Study of Seismicity] (pp. 75–114). Moscow, Russia: Inst. Fiz. Zemli Akad. Nauk SSSR Publ. (In Russ.).
- International Seismological Centre. (2023). On-line Bulletin. Retrieved from https://doi.org/10.31905/ D808B830
- 5. GS RAS. (2023). Bulletin of Teleseismic Stations, 2018–2019. Retrieved from http://www.gsras.ru/ftp/Teleseismic_bulletin/2018/
- 6. USGS. (2023). Search Earthquake Catalog. Retrieved from https://earthquake.usgs.gov/earthquakes/search/
- 7. Juraev, R.U. (2023). [Sarikhosor earthquakes on March 29, 2018 with K_R =13.1, Ms=5.1, I_0 =6 and March 7, 2019 with K_R =12.1, Ms=4.1, I_0 =5-6 (Tajikistan)]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 26(2018-2019), 273–282. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2023.26.24 EDN: GRJLGX
- 8. Ulubieva, T.R. et al. (2019). *Katalog (original) zemletryasenij Dushanbino-Vahshskogo rajona za 2018*, 2019 gg [Catalog (original) of earthquakes of the Dushanbe-Vakhsh district for 2018, 2019]. Dushanbe, Tajikistan: Funds of the State Enterprise NANT. (In Russ.).
- 9. Hayes, G.P., Myers, E.K., Dewey, J.W., Briggs, R.W., Earle, P.S., Benz, H.M., Smoczyk, G.M., Flamme, H.E., Barnhart, W.D., Gold, R.D., & Furlong, K.P. (2017). Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015. *US Geological Survey*, 2016–1192, 148 p.
- 10. Mikhailova, R.S., Ulubieva, T.R., & Petrova, N.V. (2021). [The Hindu Kush earthquake on October 26, 2015 with Mw=7.5, I_0 ~7: prior seismicity and aftershock sequence]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 24(2015), 324–339. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2021.24.31
- 11. Kufner, S.K., Schurr, B., Haberland, C., Zhang, Y., Saul, J., Ischuk, A., & Oimahmadov, I. (2017). Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction. *Earth and Planetary Science Letters*, 461, 127–140.
- 12. Kufner, S.K., Kakar, N., Bezada, M., Bloch, W., Metzger, S., Yuan, X., ... & Schurr, B. (2021). The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. *Nature communications*, 12(1), 1–11.