СПЕКТРАЛЬНЫЕ и ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ СЕВЕРНОГО КАВКАЗА в 2015 г. Л.С. Малянова, И.П. Габсатарова, Н.Л. Пономарева

ФИЦ ЕГС РАН, г. Обнинск, Россия, lmal@gsras.ru

Аннотация. Приведены динамические параметры очагов 29 землетрясений Северного Кавказа за 2015 г. с K_P =9.5–11.4, определенные по 38 амплитудным спектрам *S*-волн. Использованы записи четырех региональных цифровых сейсмических станций – «Анапа», «Кисловодск», «Махачкала» и «Сочи», удаленных от очагов не более чем на 300 км. Для среды вблизи этих станций ранее были получены значения частотно-зависимой добротности Q(*f*), необходимой для пересчета станционных спектров в очаговые. В 2015 г. большинство исследуемых землетрясений находилось на территории Восточного Кавказа. Совместно с данными за 2010–2014 гг., новые результаты позволили уточнить полученную ранее зависимость lg M_0 =*f*(K_P) для Восточного Кавказа.

Ключевые слова: модель Бруна, сейсмический момент, сброшенное напряжение, длина разрыва, динамические параметры очага, Восточный Кавказ.

DOI: 10.35540/1818-6254.2021.24.23

Для цитирования: Малянова Л.С., Габсатарова И.П., Пономарева Н.Л. Спектральные и очаговые параметры землетрясений Северного Кавказа в 2015 г. // Землетрясения Северной Евразии. – 2021. – Вып. 24 (2015 г.). – С. 237–244. doi: 10.35540/1818-6254.2021.24.23

Введение. В 2015 г. продолжены работы по построению очаговых спектров региональных землетрясений Северного Кавказа и расчету спектральных и динамических параметров очагов землетрясений этого региона. Проведение работ стало возможным после расчета оценок добротности Q_{cp} для *S*-волн Северного Кавказа по записям станций «Анапа», «Сочи» и «Кисловодск» [1–3]. Впервые в экспериментальном режиме в анализ введены записи нескольких сильных землетрясений на станции «Махачкала» в связи с тем, что опубликована работа О.В. Павленко [4], содержащая оценки добротности в окрестности этой станции, рассчитанные по 42 землетрясениям, удаленным на расстояния от 33 до 420 *км*. Записи этих землетрясений были подготовлены сотрудниками сейсмической станции «Махачкала». Для принятой в работе [4] трехсегментной функции геометрического расхождения вида 1/R от 1 до 50 *км*, 1/50 от 50 до 150 *км* и 1/ \sqrt{R} на расстояниях больших 150 *км* получены оценки добротности Q(f)_{МАК}~100×f^{0.9}. Это позволило учесть затухание энергии сейсмических волн в верхней мантии в четырех местах региона.

Исходные данные. Для исследования были выбраны наиболее сильные (*K*_P=9.5–11.4) землетрясения Северного Кавказа в 2015 г., эпицентры которых удалены не более чем на 300 *км* от станций «Кисловодск», «Анапа», «Сочи» и «Махачкала». Параметры и положение эпицентров землетрясений приводятся в табл. 1 и на рис. 1.

15 землетрясений произошли в восточной зоне – в Чечне, Дагестане и приграничной области Грузии и Азербайджана (№№ 1, 3–6, 9–10, 12–13, 15, 18–20, 22–27), одно землетрясение – в Кабардино-Балкарии (№ 16), четыре землетрясения – в Ставропольском крае (№№ 2, 7–8 и 28) по одному в шельфовой части Азовского (№ 14) и Каспийского (№ 17) морей (в табл. 1 и на рис. 1).

No	Район	Дата,	$t_0,$	Эпи	центр	h,	Kn	MPVA	Mp
51_	1 anon	д м	ч мин с	φ°, N	λ° , Ε	КМ	Rp	1/11 / 11	111
1	Чеченская Республика	05.01	11 21 42.2	43.04	45.69	77	10.8	4.9	3.8
2	Ставропольский край	15.01	12 11 42.3	45.01	44.75	10	10.7	4.7	3.7
3	Чеченская Республика	22.01	23 19 23.9	43.60	455.56	12	10.7	4.8	3.7
4	Чеченская Республика	22.01	23 27 52.8	43.56	45.56	19	9.7	4.0	3.2
5	Азербайджан	26.01	05 36 38.0	41.24	48.65	11	9.7	4.1	3.2
6	Грузия	30.01	01 56 50.1	42.35	43.06	1	9.7	4.2	3.2
7	Ставропольский край	30.01	08 53 41.9	44.86	42.85	5	10.0	4.4	3.3
8	Ставропольский край	15.02	22 11 28.5	43.98	42.71	9	10.0	4.6	3.3

Таблица 1. Список землетрясений Северного Кавказа, для которых рассчитаны спектры в 2015 г.

Мо	Район	Дата,	$t_0,$	Эпи	центр	<i>h</i> ,	К _Р	MPVA	M^{p}
JN⊡	Гаион	д м	ч мин с	φ°, N	λ° , Ε	КМ			
9	Чеченская Республика	26.02	03 45 13.8	43.15	46.02	95	9.6	3.9	3.1
10	Северная Осетия	28.02	14 39 55.3	42.74	44.21	23	9.6	4.2	3.1
11	Краснодарский край	18.03	09 47 25.4	45.19	37.56	35	9.5	4.1	3.1
12	Азербайджан	30 03	10 22 08.9	41.15	48.74	16	10.5	3.5	3.6
13	Азербайджан	27.04	03 05 42.0	41.47	48.48	5	9.5	4.0	3.1
14	Азовское море	13.06	11 54 15.1	46.43	35.16	21	9.6	4.4	3.1
15	Чеченская Республика	29.06	14 01 06.6	42.84	46.01	10	9.8	4.1	3.2
16	Кабардино-Балкария	07.07	06 56 19.2	43.57	43.39	7	9.7	4.5	3.2
17	Каспийское море	02.08	10 51 25.9	41.93	48.65	25	9.6	4.1	3.1
18	Дагестан	23.08	17 56 01.6	43.14	46.79	10	10.0	3.5	3.3
19	Чеченская Республика	29.08	13 43 33.0	42.97	46.02	72	10.1	4.2	3.4
20	Чеченская Республика	12.09	02 08 51.0	43.50	45.53	129	10.6	4.7	3.7
21	Грузия	14.09	09 07 50.2	43.17	41.64	7	11.1	5.2	3.9
22	Чеченская Республика	18.09	10 17 24.8	43.40	45.98	8	9.6	4.0	3.1
23	Азербайджан	13.10	00 13 31.4	40.91	47.43	9	10.4	4.3	3.6
24	Грузия	16.10	02 16 44.7	42.37	44.91	10	11.2	5.0	4.0
25	Грузия	16.10	06 34 17.5	42.36	44.93	11	9.9	4.4	3.3
26	Дагестан	17.10	08 43 51.1	42.19	47.94	10	9.8	4.4	3.2
27	Северная Осетия	31.10	09 15 01.6	42.88	44.08	17	10.3	4.6	3.5
28	Ставропольский край	03.11	17 43 21.4	44.70	41.59	5	11.3	5.1	4.1
29	Грузия	18.11	01 17 48.9	42.40	43.01	6	10.2	4.4	3.4

Примечание. *MPVA* – магнитуда по продольной волне *P*, полученная с использованием калибровочной функции для Кавказа [5]; *M^p* – расчетная магнитуда по формуле Т.Г. Раутиан *K*_P=4+1.8 *M* [6].

Рис. 1. Карта эпицентров землетрясений 2015 г. на Северном Кавказе, для которых проведен спектральный анализ

1 – энергетический класс *K*_P; 2 – сейсмические станции опорной сети «Кисловодск» (KIV) с широкополосным сейсмографом STS-1, «Анапа» (ANN), «Сочи» (SOC) и «Махачкала», оснащенные широкополосными приборами СМ-3-ОС.

Для анализируемых землетрясений Северного Кавказа (табл. 1) построены станционные спектры *S*-волн по записям станций «Кисловодск», «Анапа», «Сочи» и «Махачкала», которые были трансформированы в очаговые спектры по методике [7, 8], примененной ранее [9] в этом же регионе.

Методика. Для выполнения построений и расчетов использовалась методика, изложенная подробно в [9].

Построение спектров. Как и ранее, для построения станционных спектров выбирался фрагмент записи S-волны от ее вступления до момента, когда амплитуда этой группы волн достигла примерно $1/3 A_{\text{Smax}}$ [10]. Примеры записей землетрясений на горизонтальных компонентах станций «Кисловодск» и «Махачкала» представлены на рис. 2. Длительность анализируемых фрагментов записи изменялась в зависимости от удаленности станции от очага и варьировала от 35 до 100 *с* от вступления S-волны.

Для трех землетрясений, показанных на рис. 2, приводятся сглаженные станционные спектры *S*-волн горизонтальных компонент станций KIV и MAK (рис. 3). Для исследуемых землетрясений корректно проведены две асимптоты в соответствии с моделью Бруна [11].

Замеры спектральной амплитуды Ω_0 осуществлялись также на обеих горизонтальных компонентах, максимальные значения приведены в табл. 2 вместе с сейсмическими моментами M_0 и моментными магнитудами Mw.

Рис. 2. Записи землетрясений 2015 г. на горизонтальной компоненте (BH2) широкополосного сейсмометра STS-1 станции «Кисловодск» (KIV) и широкополосного сейсмометра CM3-OC станции «Махачкала»: 22 января в 23^h27^m с *К*_P=9.7, 26 февраля в 03^h45^m с *K*_P=9.6, 29 августа в 13^h43^m с *K*_P=10.1 (по вертикали приводятся цифровые отсчеты, по горизонтали – относительное время в секундах)

Рис. 3. Примеры амплитудных спектров в соответствии с фрагментами записи на рис. 2 с асимптотами в соответствии с моделью Бруна

Расчет динамических параметров. Для 29 землетрясений из табл. 1 амплитудные спектры аппроксимировались двумя асимптотами: в длиннопериодной части спектра – прямой, параллельной оси частот, а в области коротких периодов – наклонной прямой с угловым коэффициентом $\gamma \cong -2$ (рис. 3). Для всех спектров в соответствии с моделью Бруна [11] определены уровень плоской части спектра Ω_0 и точка его пересечения с высокочастотным склоном – угловая частота f_0 , которые использованы для расчета динамических параметров очагов и моментной магнитуды Mw (табл. 2). В таблице представлены следующие параметры землетрясений: Δ – эпицентральное расстояние, Ω_0 – спектральная плотность, $f_{\rm n}$ – частота перегиба спектра, f_0 – угловая частота, M_0 – сейсмический момент, Mw – моментная магнитуда, L – длина разрыва, $\Delta \sigma$ – сброшенное напряжение, $\eta \sigma$ – кажущееся напряжение, \overline{u} – средняя подвижка по разрыву.

	1		1		1		1			1			_	1	1
M	Дата,	t_0 ,	Код	Компо-		$\Omega_{0,}$	f_{Π}	f_0	$M_0,$	14	L,	Δσ,	ησ,	\overline{u} .	10
JN⊙	дм	ч мин с	с/ст	нента	Δ°	10-5	Гц	Гц	$H \cdot M$	MW	$10^3 \cdot M$	10^{3}	10^{3}	м	$K_{\rm P}$
	0.5.01			D.1.14		$\mathcal{M} \cdot \mathcal{C}$			1010		1.0	H/M^2	H/M^2	0 0 -	10.0
	05.01	11 21 42.2	KIV	BH2	2.37	0.86	2.0	2.5	4.2	4.4	1.2	85	12	0.05	10.8
2	15.01	12 11 42.3	KIV	BH2	1.82	0.01	1.8	1.8	2.1	4.2	1.2	42	7	0.06	10.7
3	22.01	23 19 23.9	KIV	BH2	2.11	3.48	1.6	1.6	6.2	4.5	1.4	79	2	0.13	10.7
4	22.01	23 27 52.8	KIV	BH2	2.12	0.90	1.9	1.9	1.6	4.1	1.2	32	1	0.05	9.7
			MAK	BHE	1.54	0.72	1.8	2.8	1.5	4.1	1.0	5.2	1	0.06	—
5	26.01	05 36 38.0	MAK	BHN	1.92	0.82	1.6	2.3	2.1	4.2	42	1	0.06	—	9.7
6	30.01	01 56 50.1	KIV	BH2	1.63	0.80	0.7	0.7	1.0	4.0	3.2	1	2	0.004	9.7
			SOC	BE	2.71	0.70	2.0	2.0	2.6	4.2	1.3	41	1	0.06	—
7	30.01	08 53 41.9	KIV	BH2	0.91	0.10	1.9	2.5	0.07	3.2	1.8	4	41	0.004	10.0
8	15.02	22 11 28.5	SOC	BN	0.32	0.32	2.0	2.5	0.94	3.9	1.0	33	3	0.04	10.0
9	26.02	03 45 13.8	KIV	BH2	2.55	0.60	1.8	1.8	3.6	4.3	1.6	31	1	0.02	9.6
			MAK	BHE	1.10	0.37	1.5	2.6	1.3	4.0	1.2	26	1	0.01	1
10	28.02	14 39 55.3	KIV	BH2	1.65	0.16	1.9	1.9	0.22	3.5	1.2	4	5	0.006	9.6
11	18.03	09 47 25.4	SOC	BN	2.26	0.30	1.2	4.0	0.93	3.9	0.6	15	1	0.11	9.5
12	30.03	10 22 08.9	MAK	BHE	2.15	0.32	1.9	1.9	7.9	4.5	1.4	101	1	0.17	10.5
13	27.04	03 05 42.0	MAK	BHE	1.66	0.18	2.0	2.1	0.38	3.7	1.2	8	2	0.01	9.5
14	13.06	11 54 15.1	ANN	BHE	1.62	0.19	0.8	1.1	0.58	3.8	2.0	2.5	2	0.01	9.6
15	29.06	14 01 06.6	KIV	BH2	2.67	0.68	2.0	2.0	1.5	4.1	1.2	30	1	0.04	9.8
16	07.07	06 56 19.2	KIV	BH2	0.64	0.49	2.1	2.1	0.26	_	1.0	9	6	0.01	9.7
17	02.08	10 51 25.9	MAK	BHN	1.33	0.30	2.4	2.4	0.54	3.8	1.0	20	2	0.02	9.6
18	23.08	17 56 01.6	MAK	BHN	0.55	0.45	1.6	2.0	0.33	3.6	1.3	5	9	0.01	10.0
19	29.08	13 43 33.0	KIV	BH2	2.62	0.46	2.3	2.3	2.8	4.3	1.2	57	4	0.03	10.1
			MAK	BHN	1.09	0.44	2.7	2.7	1.5	4.1	1.2	30	7	0.02	
20	12.09	02 08 51.0	KIV	BH2	2.11	0.66	2.1	2.5	3.2	4.3	1.2	65	10	0.04	10.6
			MAK	BHE	1.54	1.18	2.7	3.1	2.6	4.2	1.1	71	5	0.09	_
21	14.09	09 07 50.2	KIV	BH2	1.09	2.73	3.0	3.0	2.5	4.2	0.8	171	15	0.16	11.1
22	18.09	10 17 24 8	KIV	BH2	2.45	0.65	2.0	2.6	13	40	0.8	89	1	0.09	9.6
23	13 10	00 13 31 4	MAK	BHE	2.05	1.52	1 25	1.8	42	44	14	54	2	0.09	10.4
24	16 10	02 16 44 7	KIV	BH2	2.27	3 64	0.7	1.0	7.0	4.5	2.2	23	7	0.06	11.2
25	16.10	06 34 17 5	KIV	BH2	2.29	0.44	0.6	1.2	0.86	3.9	1.8	5	3	0.01	9.9
26	17 10	08 43 51 1	MAK	BHE	0.83	0.37	2.2	2.2	0.57	3.8	1.0	12	3	0.02	9.8
27	31 10	09 15 01 6	KIV	BH1	1 48	0.37	17	17	0.46	37	13	7	13	0.01	10.3
28	03 11	17 43 21 4	KIV	BH2	1.10	37	2.0	29	3.4	43	0.8	232	18	0.22	11.3
29	18.11	01 17 48 9	KIV	BH2	1.57	2.87	0.6	0.8	3.8	4.4	2.8	6	1	0.02	10.2
					/	/				1			-		

Таблица 2. Спектральные и динамические параметры очагов землетрясений Северного Кавказа в 2015 г. (*S*-волны)

Обсуждение результатов. Спектральные и динамические параметры землетрясения 18 марта в 09^h47^m (№ 11 в табл. 1 и 2) и 13 июня в 11^h54^m в Азовском море (№ 14 в табл. 1 и 2) определены также по станциям Крымской сети [12]. Параметры, полученные по станции «Анапа» (Δ =1.62°) для землетрясения 13 июня, хорошо согласуются со средними сетевыми значениями по четырем станциям Крыма [12] (табл. 3). Возможно, в дальнейшем, по мере накопления данных о спектральных и динамических параметрах очагов в Азовском море, это позволит объединить Крымские и Кавказские результаты в единый каталог. А вот для землетрясения 18 марта на Кубанской

территории результаты, полученные по станции «Сочи» (Δ =2.26°), завышены относительно Крымских данных по сейсмическому моменту M_0 , что в свою очередь сказалось на большой величине сброшенного напряжения $\Delta \sigma$ и значении Mw. Вероятно, затухание, рассчитанное с использованием значения $Q(f)_{soc}=80 \cdot f^{0.9}$, не соответствует столь удаленной трассе, частично проходящей под акваторией Черного моря.

Таблица 3. Сравнение спектральных и динамических параметров очагов двух землетрясений Северного Кавказа в 2015 г. по данным Крымской сети и станций «Анапа» (ANN) и «Сочи» (SOC)

Станции	$M_0 \cdot 10^{13}, H \cdot M$	r ₀ , км	Δσ·10 ⁵ , <i>Πα</i>	ε·10 ⁻⁶	<i>ū</i> ·10 ^{−2} , м	ησ·10 ⁵ , <i>Πα</i>	Δσ _r ·10 ⁵ , Πα	Е _u ∙10 ⁸ , Дж	Mw		
1	2	3	4	5	6	7	8	9	10		
Землетрясение 13 июня; t ₀ =11 ^h 54 ^m 14.8 ^s ; φ=46.47°, λ=35. 16°; h=11 км; K _П =0.8 [12]											
(ALU, SEV, SIM, SUDU) S	31.68	0.57	7.52	25.1	1.04	10.8	-7.04	39.7	3.6		
δS	0.12	0.03	0.03	0.06	0.07	0.07	_	0.15	0.2		
ANN	58	1.0	2.5	_	1.0	2	_	_	3.8		
Землетрясение 18 марта; t ₀ =09 ^h 47 ^m 25.1 ^s ; φ=45.34°, λ=37. 63°; h=35 км; K _П =9.3											
(ALU, SEV, SUDU) S	10.8	0.6	2	3.67	0.29	2.78	-1.78	3.54	3.3		
δS	0.11	0.05	0.17	0.19	0.13	0.11	_	0.24	0.1		
SOC	93	0.3	15		0.11	1	_	_	3.9		

Большая часть анализируемых в 2015 г. землетрясений произошла в Центральном и Восточном Кавказе. Полученные в этом районе значения скалярного сейсмического момента M_0 землетрясений разных энергетических классов K_P объединены с аналогичными результатами для событий в этой зоне за 2010–2014 гг. из [9, 13–15] (всего N=67) и позволили уточнить зависимость $\lg M_0 = f(K_P)$. Для сравнения с полученными ранее зависимостями значения M_0 , H:M переведены в значения M_0 , dH:cM. Свободный член полученной в итоге зависимости (1) почти на единицу больше свободного члена в аналогичном уравнении (2) для Кавказа, полученном ранее [16], и отличается по угловому коэффициенту на 0.03:

$$\lg M_0 = 0.68(\pm 0.06) \cdot K_P + 15.44(\pm 0.65)$$
 при *r*=0.80, *N*=67, (1)

$$\lg M_0 \pm 0.6 = 0.65K + 14.5 \tag{2}$$

Рис. 4. Соотношение различных типов энергетических классов – Раутиан (KRau), Федотова (KF68) для Камчатки и Соловьева (KSol) для Сахалина, – с *Мw* из [18]. Серыми ромбами показаны данные по землетрясениям в центральной, а черными крестами – в восточной зоне Северного Кавказа в 2015 г.

Устойчивая зависимость lg $M_0=f(K_P)$ (см. [9]) мосет быть повышена при расширении анализируемой ыборки.

В то же время воспользуемся графиком, постронным Борманом в [17] на основе формул Ризниченко 18] для соотношения K_P (на графике рис. 4 – KRau) Mw. Сопоставление данных, полученных в 2015 г.,

с графиком показывает, что результаты могут различаться в зависимости от района землетрясений: землетрясения центральной зоны близко ложатся на кривую Ризниченко [16].

Заключение. Как и ранее, полученные в 2015 г. данные по спектральным и динамическим параметрам очагов землетрясений дополнили ряд параметров для землетрясений Северного Кавказа. Впервые этот ряд был дополнен параметрами, полученными по станции «Махачкала». Однако и эти данные находятся в довольно узком энергетическом интервале, поэтому зависимость $\lg M_0 = f(K_P)$ (1) для Восточной зоны Северного Кавказа нужно считать предварительной.

Параметры, полученные по станции Анапа для двух землетрясений в Азовском море и на Кубани, находятся в хорошем согласии с Крымскими расчетами аналогичных параметров.

Работа выполнена при поддержке Минобрнауки России в рамках темы НИР № 0152-2019-0006 госзадания № 075-00576-21 ФИЦ ЕГС РАН с использованием данных, полученных на уникальной научной установке «Сейсмоинфразвуковой комплекс мониторинга арктической криолитозоны и комплекс непрерывного сейсмического мониторинга Российской Федерации, сопредельных территорий и мира».

Литература

- 1. Павленко В.А., Павленко О.В. Поглощение сейсмических волн в коре и верхней мантии в окрестностях сейсмостанции «Кисловодск» // Физика Земли. 2016. № 4. С. 24–34.
- 2. Павленко О.В. Характеристики излучения и распространения сейсмических волн на Северном Кавказе, оцененные по записям сейсмостанций «Сочи» и «Анапа» // Вопросы инженерной сейсмологии. 2016. Т. 43, № 1. С. 49–61.
- 3. Павленко О.В. Изучение региональных характеристик излучения и распространения сейсмических волн на Северном Кавказе посредством моделирования акселерограмм // Физика Земли. 2009. № 10. С. 38–48.
- 4. Павленко О.В. Характеристики поглощения сейсмических волн в восточной части Северного Кавказа, оцененные по записям сейсмостанции «Махачкала» // Физика Земли. 2020. № 5. С. 36–45.
- Соловьёва О.Н., Агаларова Э.Б., Алимамедова В.П., Гасанов А.Г., Геодакян Э.Г., Гюль Э.К., Дарахвелидзе Л.К., Петросян М.Д., Фабрициус З.Э., Хромецкая Е.А. Калибровочные функции для определения магнитуды Кавказских землетрясений по короткопериодной волне *P* на малых эпицентральных расстояниях // Интерпретация сейсмических наблюдений. – М.: МГК при Президиуме АН СССР, 1983. – С. 65–72.
- 6. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9 (176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 7. Аптекман Ж.Я., Дараган С.К., Долгополов В.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *Р*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *Р*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. 1989. № 2. С. 66–79.
- Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии. – Вып. 23 (2014 г.). – Обнинск: ФИЦ ЕГС РАН, 2020. – С. 263–270.
- Пустовитенко Б.Г. Сейсмические процессы в Черноморском регионе и сейсмическая опасность Крыма: Дис. на соиск. уч. степ. д-ра ф.-м. наук. – Киев: ИГ НАНУ, 2003. – С. 58–71.
- Brune J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes // Journal of Geophysical Research. – 1970. – V. 75, N 26. – P. 4997–5009.
- Пустовитенко Б.Г., Эреджепов Э.Э. Очаговые параметры землетрясений Крымско-Черноморского региона // Землетрясения Северной Евразии. Вып. 24 (2015 г.). Обнинск: ФИЦ ЕГС РАН, 2021. С. doi: 10.35540/1818-6254.2021.24.22
- 13. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. С. 305–311.
- 14. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2011 год. Обнинск: ГС РАН, 2017. С. 294–299.
- Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – С. 294–301.
- Ризниченко Ю.В., Джибладзе Э.А., Болквадзе И.Н. Спектры колебаний и параметры очагов землетрясений Кавказа // Исследования по физике землетрясений. – М.: Наука, 1976. – С. 74–86.

- 17. Bormann, P. New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum GFZ, 2012.
- 18. Ризниченко Ю.В. Проблемы сейсмологии. Избранные труды. М: Наука, 1985. 408 с.

SPECTRAL and FOCAL PARAMETERS

of NORTHERN CAUCASUS EARTHQUAKES in 2015

L.S. Malyanova, I.P. Gabsatarova, N.L. Ponomareva

Geophysical Survey of the Russian Academy of Sciences, Russia, Obninsk, Imal@gsras.ru

Abstract. The dynamic sources parameters of 29 earthquakes of the North Caucasus for 2015 with K_R =9.5–11.4, determined from 38 *S*-wave amplitude spectra are analyzed. Records of four regional digital seismic stations, "Anapa", "Kislovodsk", "Makhachkala" and "Sochi", located no more than 300 *km* from the sources are used. For the environment near these stations, the values of the frequency-dependent Q-factor, necessary for recalculating the station spectra to the focal ones. In 2015, the majority of earthquakes studied were located in the Eastern Caucasus. The dependence between log M_0 and K_R for this zone was constructed using together with the data for 2010–2014.

Keywords: Brune model, seismic moment, stress drop, fracture length, dynamic focal parameters, Eastern Caucasus.

DOI: 10.35540/1818-6254.2021.24.23

For citation: Malyanova, L.S., Gabsatarova, I.P., & Ponomareva, N.L. (2021). [Spectral and focal parameters of Northern Caucasus earthquakes in 2015]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *24*(2015), 237–244. (In Russ.). doi: 10.35540/1818-6254.2021.24.23

References

- 1. Pavlenko, V.A., & Pavlenko, O.V. (2016). The seismic wave absorption in the crust and upper mantle in the vicinity of the Kislovodsk seismic station. *Izvestiya, Physics of the Solid Earth*, 52(4), 492–502.
- 2. Pavlenko, O.V. (2016). Characteristics of the seismic waves attenuation in the Northern Caucasus estimated from records at seismic stations "Sochi" and "Anapa". *Seismic Instruments*, 43(1), 49–61. (In Russ.).
- 3. Pavlenko, O.V. (2009). The study of the radiation characteristics and propagation of seismic waves in the North Caucasus by modeling the accelerograms of the recorded earthquakes. *Izvestiya, Physics of the Solid Earth, 45*(10), 874–884.
- 4. Pavlenko, O.V. (2020). Seismic Wave Absorption in the Eastern Part of the North Caucasus Estimated from the Records of Seismic Station "Makhachkala". *Izvestiya, Physics of the Solid Earth, 5, 36–45.*
- Solov'yova, O.N., Agalarova, E.B., Alimamedova, V.P., Gasanov, A.G., Geodakyan, E.G., Gyul', E.K., Darakhvelidze, L.K., Petrosyan, M.D., Fabritsius, Z.E., & Khrometskaya, E.A. (1983). [Calibration functions for determining the magnitude of Caucasian earthquakes by the short-period wave *P* at small epicentral distances]. In *Interpretatsiia seismicheskikh nabliudenii* [Interpretation of seismic observations] (pp. 65–72). Moscow, Russia: MGC at the Presidium of the AS USSR Publ. (In Russ.).
- Rautian, T.G. (1960). [Energy of the Earthquakes]. In Metody detalnogo izucheniya seismichnosti. Trudy IFZ AN SSSR, 9(176) [Methods of Detailed Study of the Seismicity. Proceedings of the IFZ AS USSR № 9(176)] (pp. 75–114). Moscow, Russia: IFZ AN SSSR Publ. (In Russ.).
- Aptekman, Zh.Ya., Daragan, S.K., Dolgopolov, V.V., Zakharova, A.I., Zobin, V.M., Kogan, S.Ya., Korchagina, O.A., Moskvina, A.G., Polikarpova, L.A., & Chepkunas, L.S. (1985). [P-wave spectra in the problem of determining the dynamic parameters of earthquake focuses. Unification of the initial data and the procedure for calculating the amplitude spectra]. *Vulkanologiia i seismologiia* [Journal of Volcanology and Seismology], 2, 60–70. (In Russ.).
- Aptekman, Zh.Ya., Belavina, Yu.F., Zakharova, A.I., Zobin, V.M., Kogan, S.YA., Korchagina, O.A., Moskvina, A.G., Polikarpova, L.A., & Chepkunas, L.S. (1989). [P-wave spectra in the problem of determining the dynamic parameters of earthquake focuses. Transition from the station spectrum to the focal and calculation of the dynamic parameters of the focus]. *Vulkanologiia i seismologiia* [Journal of Volcanology and Seismology], 2, 66–79. (In Russ.).
- Malyanova, L.S., & Gabsatarova, I.P. (2020). [Spectral and source parameters of earthquakes on Northern Caucasus]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 23(2014), 263–270. (In Russ.). doi: 10.35540/1818-6254.2019.22.28

- Pustovitenko, B.G. (2003). Seismicheskie protsessy v Chernomorskom regione i seismicheskaia opasnost' Kryma. Dis. d-ra fiz.-mat. nauk [Seismic processes in the Black Sea region and seismic hazard of the Crimea. Dr. phys.-math. sci. diss.]. Kiev, Ukraine: IG NANU Publ. (In Russ.).
- 11. Brune, J.N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. *Journal of geophysical research*, 75(26), 4997–5009.
- Pustovitenko, B.G., & Eredzhepov, E.E. (2021). [Source parameters of Crimean-Black sea earthquakes in 2015]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 24(2015), 226–236. (In Russ.). doi: 10.35540/1818-6254.2021.24.22
- Malyanova, L.S., & Gabsatarova, I.P. (2016). [Spectral and focal parameters of earthquakes of the Northern Caucasus]. In *Zemletriaseniia Severnoi Evrazii v 2010 godu* [Earthquakes in Northern Eurasia, 2010] (pp. 305–311). Obninsk, Russia: GS RAS Publ. (In Russ.).
- Malyanova, L.S., & Gabsatarova, I.P. (2017). [Spectral and focal parameters of earthquakes of the Northern Caucasus]. In *Zemletriaseniia Severnoi Evrazii v 2011 godu*. [Earthquakes in Northern Eurasia, 2011] (pp. 294–299). Obninsk, Russia: GS RAS Publ. (In Russ.).
- Malyanova, L.S., & Gabsatarova, I.P. (2018). [Spectral and focal parameters of earthquakes of the Northern Caucasus]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 21(2012), 294–301. (In Russ.).
- Riznichenko, Yu.V., Dzhibladze, E.A., & Bolkvadze, I.N. (1976). [Oscillation spectra and parameters of foci of earthquakes in the Caucasus] In *Issledovaniia po fizike zemletriasenii* [Studies in the physics of earthquakes] (pp. 74–86). Moscow, Russia: Nauka Publ. (In Russ.).
- 17. Bormann, P. (2012). New Manual of Seismological Observatory Practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ, Potsdam.
- 18. Riznichenko, Yu.V. (1992). Problems of seismology: selected papers. Springer Publ., 445 p.