КРЫМ

В.А. Свидлова, Г.Д. Пасынков, А.А. Пустовитенко

Отдел сейсмологии Института геофизики НАН Украины, г. Симферополь, seismosilver@mail.ru

Инструментальные сейсмологические наблюдения в 2007 г. проводились по-прежнему на 7 стационарных сейсмических станциях Крыма (табл. 1). В марте 2007 г. завершено дооснащение сети цифровым оборудованием, изготовленным в отделе сейсмологии на базе микроконтроллера MSP430 [1]. На сейсмических станциях «Симферополь» и «Ялта» продолжалась регистрация цифровой аппаратурой SDAS, изготовленной в ГС РАН. Данные о параметрах цифровой аппаратуры приведены в табл. 2. Все станции функционировали непрерывно. Обработка полученных цифровых материалов наблюдений выполнялась по программному комплексу WSG [2].

№	Стан	ция		Дата	Дата Начало		ордина	ты	Подпочва
	Название	Код		открытия	цифровой	φ°, Ν	λ°, Ε	h _y , м	
		межд. рег.			регистрации				
1	Феодосия	FEO	Фдс	11.10.1927	06.09.2006	45.02	35.39	40	мергелистая глина
2	Ялта	YAL	Ялт	13.13.1928	05.07.2000	44.48	34.15	23.6	шиферные сланцы
3	Симферополь	SIM	Смф	14.05.1928	25.06.2000	44.95	34.12	275	нуммулитовый известняк
4	Севастополь	SEV	Свс	28.06.1928	06.09.2006	44.54	33.68	42	суглинки
5	Алушта	ALU	Алш	03.10.1951	19.07.2006	44.68	34.40	61	глинистые сланцы
6	Судак	SUDU	Суд	18.10.1988	29.07.2006	44.89	35.00	108	глинистые сланцы
7	Керчь	KERU	Кер	19.05.1997	06.03.2007	45.31	36.46	50	мшанковый известняк

Таблица 1. Сейсмические станции Крыма (в хронологии их открытия), работавшие в 2007 г.

Таблица 2. Данные о параметрах цифровой аппаратуры сейсмических станций Крыма, работавших в 2007 г.

Название станции	Тип датчика	Код канала	Частотный диапазон, Ги	Частота опроса данных, Гц	Эффективная разрядность АЦП	Чувствительность, отсчет/(<i>м</i> / <i>c</i>)
Симферополь	СКД	BH (N, E, Z) v	0.01–4	20	16	$2.5 \cdot 10^8$
	CM-3	EH (N, E, Z) v	0.1-20	100	16	$1.9 \cdot 10^{9}$
Ялта	СКД	BH(N, E, Z)v	0.015–4	20	16	$3.3 \cdot 10^9$
	CM-3	EH(N, E, Z)v	0.2–20	100	16	$3.1 \cdot 10^9$
Алушта	ВЭГИК	EH(N, E, Z)v	0.2–10	64	12	6.3·10 ⁹
Судак	СКМ-3	EH(N, E, Z)v	0.2–10	64	12	$2.9 \cdot 10^{9}$
Севастополь	СКМ-3	EH(N, E, Z)v	0.2–10	64	12	1.9·10 ⁹
Феодосия	ВЭГИК	EH (N, E) v	0.2–10	64	12	$2.5 \cdot 10^9$
	СКМ-3	EH (Z) v	0.2–10	64	12	$2.5 \cdot 10^9$
Керчь	ВЭГИК	EH(N, E, Z)v	0.2–10	64	12	$6.4 \cdot 10^9$

Примечание. Символом «v» обозначен велосиграф.

На рис. 1 показаны изолинии энергетической представительности землетрясений K_{\min} , построенные по материалам наблюдений цифровой аппаратурой [3]. Описанная сеть сейсмических станций обеспечивает представительную регистрацию землетрясений с K_{\min} =9 практически на всей территории Крымского региона. Для значительной части региона представительны землетрясения с K_{\min} =8.

В 2007 г. в регионе Крым зарегистрировано 48 землетрясений с K_{Π} =4.8–11.8, для которых определены координаты гипоцентров и одно землетрясение, произошедшее 25 декабря в 04^h09^m с $K_{\rm P}$ =9.7, Mw=3.7 и названное Криворожским, вне Крыма. Оно обследовано, результаты представлены в отдельной статье наст. сб. [4]. Каталог основных параметров этих землетрясений представлен в [5]. Для трех событий Крыма (5 октября в 23^h17^m с K_{Π} =11.8, 6 октября в 19^h34^m с K_{Π} =8.9, 7 ноября в 00^h20^m с K_{Π} =9.6) получены спектральные и динамические параметры очагов [6] и для первого из них – решение механизма очага [7]; для Криворожского землетрясения определены такие же характеристики [4]. Пространственное распределение эпицентров землетрясений проиллюстрировано на рис. 2.

Рис. 2. Карта эпицентров землетрясений Крыма в 2007 г.

1 – энергетический класс K_{Π} [8]; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – граница района; 5 – государственная граница. Суммарная сейсмическая энергия, высвободившаяся в очагах землетрясений региона в 2007 г., равна $\Sigma E = 682.78 \cdot 10^9 \, \square \varkappa$, что выше соответствующей энергии в 2006 г. ($\Sigma E = 215.342 \cdot 10^9 \, \square \varkappa$), но в 1.5 раза меньше ее среднего уровня за предшествующие 15 лет. Общее число землетрясений Крыма $N_{\Sigma} = 48$ чуть меньше среднего (табл. 3).

Год			N_{Σ}	ΣE ,								
	4	5	6	7	8	9	10	11	12	13	2	10 ⁹ Дж
1992		3	15	15	17	14	6	4	2		76	1861.72
1993	1	5	11	9	6	6	2				40	21.109
1994	23	22	13	5	13	4					81	4.345
1995	4	4	12	13	9	2		1			45	42.326
1996		5	8	12	16	5	3				49	33.904
1997		1	7	8	5	5	5	1	2		31	904.407
1998		1	15	28	13	11	7	3	1		79	1310.927
1999		3	6	7	12	10	4	3			45	321.38
2000	3	2	13	8	6	4	2	1			39	66.109
2001	2	6	22	14	8	8	3	4			65	482.53
2002	1	7	9	10	4	6				1	38	10006.063
2003	1	11	16	11	15	5	2	1			62	46.293
2004		3	16	12	9	7	2	1			50	57.202
2005		1	7	7	7	3	2		1		28	519.131
2006	1	2	8	15	6	8	1	1			42	215.342
Сумма	37	76	178	174	146	98	39	20	6	1	770	15892.79
Среднее	2.47	5.07	11.87	11.60	9.73	6.53	2.60	1.33	0.40	0.07	51.33	1059.47
2007		2	7	16	11	7	4		1		48	682.751

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_Π и суммарная сейсмическая энергия Σ*E* Крыма за 1992–2007 гг.

Примечание. Данные за 1992-2005гг. приведены из [9], за 2006 г. - из [1].

Относительное увеличение высвобожденной сейсмической энергии обусловлено самым сильным землетрясением года с K_{Π} =11.8 (рис. 2), которое произошло 5 октября в Керченско-Анапском районе (№ 5). Его энергия составляет E=6.31·10¹¹ Дж.

По данным международной сети станций для землетрясения 5 октября определение механизма очага по методу тензора момента центроида в [10] отсутствует, поэтому в регионе была проведена специальная работа по сбору и анализу волновых форм этого землетрясения. Определены знаки первых вступлений продольных волн, что в совокупности со знаками первых вступлений из международного сейсмологического центра [10] позволило получить решение механизма его очага [7] (табл. 4, рис. 3).

№	Дата,	$t_{0,}$	h,	Mw,	$m_{\rm b},$	<i>К</i> п,	(Эси гл	авнь	іх напр	яжеі	ний	Нодальные плоскости					
	д м	ч мин с	км	[6]	[10]	[5]		Т		N		P		NP1		NP2		?
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	05.10	23 17 55.8	18	4.3	4.4	11.8	75	78	11	297	9	205	125	55	104	282	37	71

Таблица 4. Параметры механизма очага землетрясения 5 октября в 23^h17^m55.8^c с *K*_{II}=11.8

Всего для определения механизма очага использовано 32 знака первых вступлений продольных волн, полученных по записям станций, окружающих очаг в широком азимутальном створе. Определение двух возможных положений поверхности разрыва и осей главных напряжений, действующих в очаге, проведено по стандартной методике [11]. Углы выхода сейсмических волн определены для удаленных станций по годографу «ak135» [12], а для близких – по региональному годографу [13].

В соответствии с табл. 4, землетрясение произошло под действием горизонтальных ($PL_P=9^\circ$) напряжений сжатия, ориентированных близмеридионально ($AZM_P=205^\circ$), и близвертикальных ($PL_T=75^\circ$) напряжений растяжения близширотного направления ($AZM_T=78^\circ$). Подвижка по обеим нодальным плоскостям – практически чистый взброс с незначительным сдвигом, правосторонним по *NP1* и левосторонним – по *NP2* (рис. 3).

Рис. 3. Стереограмма механизма очага (нижняя полусфера) землетрясения 5 октября 2007 г. с *К*_П=11.8, *Мw*=4.3 по знакам первых вступлений *P*-волн

 нодальные линии; 2, 3 – оси главных напряжений растяжения и сжатия соответственно; зачернена область волн сжатия.

Простирание нодальных плоскостей, а также направленность осей напряжений в очаге землетрясения 5 октября 2007 г. не противоречат полученным ранее [14] решениям для других землетрясений Керченско-Анапского района.

Примечательно, что, в отличие от предыдущих лет, сейсмическая деятельность наблюдалась в каждом из девяти районов региона. Развертка во времени значений энергетических классов зарегистрированных в 2007 г. землетрясений показана на рис. 4.

Январь был месяцем затишья, без землетрясений [5]. С февраля по июнь сейсмические события различных энергетических классов происходили сравнительно разреженно. Затем динамика возникновения землетрясений изменилась. В июле, сентябре и октябре сейсмическая энергия высвобождалась наиболее плотно по числу событий. На октябрь также приходится и

Рис. 4. Временной ряд землетрясений в 2007 г.

максимум высвободившейся энергии. К концу года сейсмическая деятельность затухает, уменьшаются месячные числа событий.

Распределение числа землетрясений по энергетическим классам K_{Π} и суммарной выделившейся энергии ΣE по районам региона за 2007 г. представлено в табл. 5.

N⁰	Район		K _Π							N_{Σ}	ΣE ,
		5	6	7	8	9	10	11	12		10 ⁹ Дж
1	Севастопольский		1	1	0	1	1			4	25.924
2	Ялтинский		4	3	2		1			10	5.300
3	3 Алуштинский		3	5	1					11	0.117
4	Судакский		1	2						3	0.053
5	Керченско-Анапский			1	4	2	1		1	9	637.284
6	Степной Крым			3						3	0.031
7	Азово-Кубанский				1	1				2	0.882
8	Северо-Западный				2					2	0.331
9	Черноморская впадина				2	1	1			4	12.829
	Всего	2	9	15	12	5	4		1	48	682.751

Таблица 5. Распределение числа землетрясений Крыма по энергетическим классам *K*_Π и суммарная сейсмическая энергия Σ*E* по районам за 2007 г.

Суммарная сейсмическая энергия, выделившаяся во всех 48 очагах землетрясений Крыма, равна ΣE =6.828·10¹¹ Дж (табл. 4), 92.4 % которой выделилось в очаге максимального (K_{max} =11.8) землетрясения. Ниже проанализированы особенности сейсмичности каждого района.

В Севастопольском районе (\mathbb{N} 1) зарегистрировано четыре землетрясения с K_{Π} =6.5–10.4, что на два меньше, чем в 2006 г., однако суммарная энергия в 2007 г. возросла более чем на два порядка (ΣE =2.592·10¹⁰ Дж вместо ΣE =6.154·10⁷ Дж в 2006 г. [15]). В границах этого района представительны землетрясения с K_{\min} =8. Самый сильный (K_{Π} =10.4) толчок произошел 27 апреля в 07^h54^m с h=38 км. Для землетрясения 6 октября в 19^h34^m с K_{Π} =8.9 получены спектральные и динамические параметры очага [6].

Стабильно наибольшая плотность эпицентров землетрясений наблюдается в центральной части региона, в **Ялтинском районе** (**No 2**), где зарегистрировано десять событий с K_{Π} =5.9–9.7. В результате в 2007 г. выделилось сейсмической энергии в 1.8 раза больше (ΣE =5.3·10⁹ $\mathcal{Д}$ ж (табл. 5) вместо ΣE =2.925·10⁹ \mathcal{J} ж [1]). Уровень энергии представительных землетрясений на разных участках района меняется от K_{\min} =6 до K_{\min} =8. Большинство событий локализовано в пределах K_{\min} =8. Максимальное (K_{Π} =9.7) землетрясение реализовалось 23 июня в 19^h26^m в 20 км от Ялты, но макросейсмический эффект отсутствовал вследствие заглубленности (h=34 км) очага. Возможно, этот толчок сопровождался поздним (16 июля в 08^h52^m) афтершоком с K_{Π} =6.6.

В Алуштинском районе (№ 3) локализовано 11 землетрясений с K_{Π} =4.8–7.4, суммарная энергия которых, равная ΣE =1.167·10⁸ Дж, увеличилась более чем в семь раз, по сравнению с таковой в 2006 г. (ΣE =1.530·10⁷ Дж [15]). Землетрясение максимального класса K_{Π} =7.6 при глубине h=25 км произошло 29 ноября в 01^h30^m вблизи условной границы Судакского района.

Судакский район (№ 4) устойчиво отличается небольшим числом событий, в том числе и в 2007 г. всего три: 1 марта в $18^{h}23^{m}$ с K_{Π} =6.2, 4 апреля в $02^{h}09^{m}$ с K_{Π} =7.3 и 5 сентября в $17^{h}07^{m}$ с K_{Π} =7.5. Незначительна и суммарная энергия землетрясений, равная ΣE =5.316·10⁷ Дж (в 2006 г. ΣE =1.585·10⁷ Дж [15]).

Максимальной сейсмической энергией характеризуется Керченско-Анапский район (№ 5), где высвободилось 93.3% от годовой сейсмической энергии региона в очагах девяти землетрясений с К_П=7.2–11.8. Уровень энергии представительных землетрясений в разных частях района меняется от K_{min}=8 до K_{min}=9. Суммарная сейсмическая энергия возросла на два порядка, в сравнении с энергией в 2006 г., и равна *ΣЕ*=6.373·10¹¹ Дж (в 2006 г. ΣE=7.411·10⁹ Дж [1]). Самое значительное (K_П=11.8) событие района и региона в целом произошло, как указано выше, 5 октября в 23^h17^m на глубине *h*=18 км. Оно ощущалось с интенсивностью сотрясений I=4 балла в гг. Новороссийск ($\Delta=49 \ \kappa M$) и Анапа ($\Delta=41 \ \kappa M$) [16]. По зарегистрированы сейсмические колебания землетрясения данным [10], от 576 сейсмическими станциями на эпицентральных расстояниях до 10000 км (97.92°) в широком азимутальном окружении. К афтершокам основного толчка можно отнести, с учетом погрешности определения координат и глубины эпицентра, два землетрясения: 5 октября в $23^{h}17^{m}55.8^{s}$ с K_{Π} =9.0 и 7 ноября в $00^{h}20^{m}$ с K_{Π} =9.6. Для главного толчка и второго афтершока получены спектральные и динамические параметры очага [6].

В самом слабосейсмичном районе Степной Крым (№ 6) были зарегистрированы три землетрясения в узком диапазоне с K_{Π} =6.8–7.1, что ниже представительного уровня K_{\min} =8 (рис. 1). Высвобожденная в 2007 г. в районе сейсмическая энергия, равная ΣE =3.149·10⁷ Дж, минимальная относительно других районов (в 2006 г. здесь землетрясения не зафиксированы [1]).

В Азово-Кубанском районе (\mathbb{N} 7) продолжалась сейсмическая деятельность в виде афтершоков Осипенковского (Бердянского) землетрясения 31.07.2006 г. с Mw=3.3 [17]. Уровень представительной регистрации землетрясений для данного района $K_{\min}=9$. С большой погрешностью ($\delta=30-40 \ \kappa m$) локализованы в конце года два землетрясения: 8 декабря в $18^{h}15^{m}$ с $K_{\Pi}=8.4$ и 29 декабря в $16^{h}28^{m}$ с $K_{\Pi}=8.8$ [5]. Их суммарная энергия равна $\Sigma E=8.821\cdot10^{8} \ \mathcal{Awc}$ (в 2006 г. $\Sigma E=6.31\cdot10^{9} \ \mathcal{Awc}$ [15]).

После семилетней паузы сейсмичность Северо-Западного района (№ 8) проявилась двумя землетрясениями с K_{Π} =8.4 и 7.9, т.е. ниже представительного уровня (K_{\min} =9 на рис. 1), произошедшими 20 июня в $22^{h}34^{m}$ и 7 октября в $12^{h}58^{m}$ соответственно [5]. Их суммарная сейсмическая энергия равна ΣE =3.306·10⁸ Дж.

На втором месте по уровню высвобожденной сейсмической энергии ($\Sigma E=12.829 \cdot 10^9 \ Д ж$) в регионе отмечен район **Черноморской впадины** (№ 9), хотя по сравнению с энергией, высвобожденной в 2006 г. ($\Sigma E=199.926 \cdot 10^9 \ Д ж$ [1]), ее величина уменьшилась в 15.6 раз. Землетрясение максимального класса $K_{\Pi}=10.0$ и глубиной $h=20 \ \kappa M$ реализовалось 20 апреля в 05^h08^m [5].

В заключение можно отметить, что в рамках границ региона распределение эпицентров землетрясений и выделение сейсмической энергии по районам имеют традиционный вид. Особое внимание привлекает лишь активизация сейсмичности Северо-Западного района.

Литература

- 1. Пасынков Г.Д., Шаторный Б.И., Свидлова В.А., Козиненко Н.М. Крым // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 59–64.
- Красилов С.А., Коломиец М.В., Акимов А.П. Организация процесса обработки цифровых сейсмических данных с использованием программного комплекса WSG // Современные методы обработки и интерпретации сейсмологических данных. Материалы Международной сейсмологической школы, посвященной 100-летию открытия сейсмических станций «Пулково» и «Екатеринбург». Обнинск: ГС РАН, 2006. С. 77–83.
- 3. Свидлова В.А., Сыкчина З.Н., Пасынков Г.Д. Оценка представительности землетрясений Крыма по материалам цифровых станций // Сейсмологический бюллетень Украины за 2009 год. Симферополь: ИГ НАНУ, КЭС, 2011. С. 65–67.
- 4. Пустовитенко Б.Г., Кульчицкий В.Е., Пустовитенко А.А., Скляр А.М. Криворожское землетрясение 25 декабря 2007 г. с *К*_P=9.7, *MLH*=3.1, *Mw*=3.3, *I*₀=5 (Украина, Днепропетровская область). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 5. Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.). Каталог землетрясений Крыма за 2007 г. (*N*=49). (См. Приложение к наст. сб. на CD).
- 6. Пустовитенко Б.Г., Мержей Е.А., Поречнова Е.И., Сыкчина З.Н. Динамические параметры очагов землетрясений Крыма. (См. раздел II (Спектры и динамические параметры очагов землетрясений) в наст сб.).
- 7. Пустовитенко А.А. (отв. сост.). Каталог механизмов очагов землетрясений Крыма за 2007 г. (*N*=1). (См. Приложение к наст. сб. на CD).
- 8. Пустовитенко Б.Г., Кульчицкий В.Е. Об энергетической оценке землетрясений Крымско-Черноморского региона // Магнитуда и энергетическая классификация землетрясений. – М.: ИФЗ АН СССР, 1974. – Т. 2. – С. 113–125.
- 9. Пустовитенко А.Н., Свидлова В.А., Пасынков Г.Д., Пустовитенко А.А. Крым // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 70–76.
- 10. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009. URL: http://www.isc.ac.uk
- 11. Балакина Л.А., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 198 с.
- 12. Kennet B.L.N. Seismological Tables: AK135 // Research School of earth Sciences Australian national University. Australia, Canberra, ACT0200. 2005. 80 c.
- 13. Кульчицкий В.Е., Сафонова Г.П., Свидлова В.А. Годографы сейсмических волн Крымско-Черноморских землетрясений // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым–Карпаты) за 1983 г. – Киев: Наукова думка, 1986. – С. 94–103.
- 14. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А. Экспериментальные данные о процессах в очагах Черноморских землетрясений // Сейсмологический бюллетень Украины за 2005 год. – Симферополь: ИГ НАНУ, КЭС, 2007. – С. 152–163.
- 15. Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.). Каталог землетрясений Крыма за 2006 г. (*N*=42) // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. (Ha CD).
- 16. Сейсмологический бюллетень (ежедекадный) за 2007 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2007–2008. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2007/*
- Шустовитенко А.Н., Свидлова В.А., Князева В.С., Бушмакина Г.Н., Габсатарова И.П. Две версии изосейст Осипенковского (Бердянского) землетрясения 31 июля 2006 г. с *Мw*=3.3, *I*₀=5 (Украина, Запорожская область) // Землетрясения Северной Евразии, 2006 год. – Обнинск: ГС РАН, 2012. – С. 359–366.