КАМЧАТКА И КОМАНДОРСКИЕ ОСТРОВА

Е.А. Матвеенко¹, С.В. Митюшкина¹, Е.И. Иванова¹, А.Ю. Чеброва¹, В.И. Левина², А.В. Ландер³, В.Н. Чебров¹, Е.М. Гусева¹

Камчатский филиал ГС РАН, г. Петропавловск-Камчатский, e-mail: ayuch@emsd.ru
 ² Геофизическая служба РАН, г. Обнинск, e-mail: vlr.levina@gmail.com
 ³ Международный институт теории прогноза землетрясений и математической геофизики РАН, г. Москва, e-mail: land@mitp.ru

В сети сейсмических станций Камчатки в 2006 г. продолжались работы по модернизации сейсмических станций (рис. 1, табл. 1, 2). Произведена замена аналоговой регистрации на цифровую на станции «Крутоберегово» с 10 апреля, в «Оссоре» – с 19 августа. Две новые радиотелеметрические станции «Безымянный» и «Киришев» введены в работу в районе влк. Безымянный в начале августа.

Рис. 1. Карта энергетической представительности землетрясений *К*_{min} и сеть сейсмических станций Камчатки в 2006 г.

1, 2 – цифровая и радиотелеметрическая станция соответственно (коды станций соответствуют международным кодам из табл. 1); 3 – изолиния K_{\min} ; 4 – граница зоны ответственности региональной сети КФ ГС РАН.

После разрушительного Олюторского землетрясения 20 апреля 2006 г. с Mw=7.6 [1] в его эпицентральной зоне была развернута сеть (табл. 3, рис. 2) автономных цифровых станций «Mars» (производство Германии) с автоматическим сейсмическим регистратором «Mars» и сейсмометром LE-3D/1s [2], у которых частотный диапазон равен 1–40 Γu , частота опроса – 100 Γu , разрядность АЦП – 24 бит, чувствительность – 10^8 – 10^9 отсчет/(m/c). Вместе со станцией «Mars» (ST01) в пос. Тиличики на том же постаменте был установлен цифровой комплект GSR-24 для регистрации сильных движений (табл. 1, 2). Здесь же 2 мая 2006 г. установили также комплект цифровой станции СЦСС [3]. Таким образом, к концу года сеть полностью перешла на цифровую регистрацию и состояла из 41 сейсмической станции, на которых установлено 32 комплекта радиотелеметрической аппаратуры и 13 – цифровой (рис. 1, табл. 1, 2). Прием сигналов с радиотелеметрических пунктов и их аналогово-цифровое преобразование осуществляется на трех приемных центрах в г. Петропавловске-Камчатском, пос. Ключи и пос. Козыревск. Лишь на станции «Петропавловск» продолжает работать параллельно аналоговая аппаратура (табл. 4).

Карты энергетической представительности K_{\min} землетрясений Камчатки в 2006 г. показаны на рис. 1, 2, из которых виден теоретический уровень K_{\min} =8.5 для наиболее активной территории – Курило-Камчатского и Алеутского глубоководных желобов, континентальной Камчатки, и K_{\min} =9.5 – на территории Корякского автономного округа и Северных Курил, а также для всего региона внутри границ ответственности камчатской сети.

Методика определения параметров землетрясений, изложенная в [4–6], не изменилась. Обработка сигналов цифровых сейсмических станций производится при помощи пакета программ DIMAS [7].

№	Стані	ция		Да	ата	Кс	ординаты		Тип
	Название	Ко	д	открытия	установки	φ°, N	λ°, Ε	$h_{\rm y}$,	станции
		межд.	рег.	станции	аппаратуры			\mathcal{M}	
1	2	3	4	5	6	7	8	9	10
1	Ключи	KLY	KLY	1946	14.02.1989	56.3130	160.8520	70	ТЛМ
					04.11.2004				цф GEOTECH
2	Петропавловск	PET	PET	18.03.1951	18.03.1951	53.024	158.653	100	анлг
					30.01.1987				ТЛМ
					15.09.1993				цф–IRIS
3	Козыревск	KOZ	KOZ	17.10.1958	21.06.2001	56.0579	159.8723	60	ТЛМ
4	Паужетка	PAU	PAU	30.04.1961	10.04.2005	51.4680	156.8150	130	цфСЦСС
5	Шипунский	SPN	SPN	25.08.1962	11.04.1985	53.1050	160.0110	70	ТЛМ
6	Беринг	BKI	BKI	20.11.1962	25.12.2005	55.1940	165.9836	15	цф–SDAS
7	Авача	AVH	AVH	16.01.1963	13.05.1976	53.2640	158.7400	960	ТЛМ
8	Эссо	ESO	ESO	24.11.1965	16.12.2004	55.9316	158.6949	490	цфСЦСС
9	Крутоберегово	KBG	KBG	10.04.1968	10.04.2006	56.2584	162.7127	30	цфСЦСС
					01.11.2004				цфGSR-24
10	Occopa	OSSR	OSS	25.01.1973	19.08.2006	59.2650	163.0820	20	цфСЦСС
11	Коряка	KOK	KRK	30.08.1977	30.08.1977	53.2960	158.6430	1050	ТЛМ
12	Горелый	GRL	GRL	14.08.1980	14.08.1980	52.5540	158.0730	1400	_ " _
13	Институт	INSR	INS	20.11.1981	20.11.1981	53.0665	158.6086	170	_ " _
14	Налычево	NLC	NLC	30.03.1984	30.03.1984	53.1710	159.3450	20	_ " _
15	Русская	RUS	RUS	21.12.1987	21.12.1987	52.4320	158.5130	80	_ " _
16	Ганалы	GNL	GNL	15.01.1988	15.01.1988	53.6950	157.9420	1200	_ " _
17	Крестовский	KRSR	KRS	08.04.1988	08.04.1988	56.2170	160.5650	1180	_ " _
18	Зелёная	ZLN	ZLN	30.10.1988	30.10.1988	56.0170	160.8030	1050	_ " _
19	Карымский	KII	KRY	02.09.1989	02.09.1989	54.0360	159.4490	900	_ " _
20	Апача	APC	APC	24.02.1990	14.07.2004	52.9257	157.1329	120	цфСЦСС
21	Каменистая	KMNR	KMN	27.09.1990	27.09.1990	55.7560	160.2470	1145	ТЛМ
22	Сомма	SMAR	SMA	27.02.1991	27.02.1991	53.2660	158.8120	2050	_ " _
23	Седловина	SDLR	SDL	17.12.1991	17.12.1991	53.2780	158.8869	1230	_ " _
24	Срединный	SRDR	SRD	04.01.1992	04.01.1992	56.3190	159.6930	830	_ " _
25	Угловая	UGLR	UGL	19.08.1992	19.08.1992	53.2100	158.8288	1200	_ " _
26	Тиличики	TILR	TIL	02.12.1993	25.08.2006	60.4310	166.0600	40	цфСЦСС
					02.05.2006				цфGSR-24
27	Каменское	KAMR	KAM	24.10.1994	24.10.1994	62.4560	166.2100	190	цф–POSEJDON
28	Мыс Козлова	MKZ	MKZ	25.09.1997	25.09.1997	54.5560	161.7300	520	ТЛМ
29	Малая Ипелька	MIPR	MIP	11.11.1997	11.11.1997	52.2760	156.7580	370	_ " _
30	Крутоберегово-1	KBTR	KBT	14.10.1997	14.10.1997	56.2080	162.8190	360	_ " _
31	Копыто	KPT	KPT	24.10.1997	24.10.1997	55.9660	160.2220	1000	_ " _
32	Цирк	CIRR	CIR	16.10.1998	16.10.1998	56.1150	160.7480	1450	_ " _

Таблица 1. Сейсмические станции Камчатки (в хронологии их открытия), работавшие в 2006 г.

КАМЧАТКА И КОМАНДОРСКИЕ ОСТРОВА Е.А. Матвеенко, С.В. Митюшкина, Е.И. Иванова, А.Ю. Чеброва, В.И. Левина, А.В. Ландер, В.Н. Чебров, Е.М. Гусева

N⁰	Стані	ция		Да	ата	Кс	ординаты	Тип	
	Название	Ко	д	открытия	установки	φ°, N	λ°, Ε	$h_{\rm y}$,	станции
		межд.	рег.	станции	аппаратуры			м	
1	2	3	4	5	6	7	8	9	10
33	Логинов	LGNR	LGN	01.09.1999	01.09.1999	56.0830	160.6900	2530	_ " _
34	Карымшина	KRMR	KRM	17.01.2000	17.01.2000	52.8287	158.1281	120	цф-спец.
35	Алаид	ALID	ALD	08.08.2001	08.08.2001	50.8756	155.5523	1400	ТЛМ
36	Тумрок	TUMR	TUM	25.07.2003	25.07.2003	55.2830	160.1460	1210	_ " _
37	Семкарок	SMKR	SMK	18.09.2005	18.09.2005	56.5820	161.4680	895	_ " _
38	Сорокина	SRKR	SRK	18.09.2005	18.09.2005	56.6540	161.1680	845	_ " _
39	Байдарная	BDR	BDR	08.10.2005	08.10.2005	56.5680	161.2080	720	_ " _
40	Безымянный	BZMR	BZM	05.08.2006	05.08.2006	55.9350	160.4900	1450	_ " _
41	Киришев	KIRR	KIR	05.08.2006	05.08.2006	55.9530	160.3420	1470	_ " _

Примечание. Координаты станций в графах 7, 8 приведены по данным, уточненным с помощью систем глобального позиционирования; сокращения в графе 10 (тлм, цфр, анлг) соответствуют телеметрической, цифровой и аналоговой станциям; в графе 6 приведена дата установки аппаратуры, действующей на конец 2006 г.; на ст. «Карымшина» – специально разработанный для нее цифровой комплекс сбора данных [8].

Таблица 2. Данные об аппаратуре цифровых и телеметрических станций Камчатки и Командорских островов в 2006 г.

Название станции	Тип датчика	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(M/c), акселерограф – отсчет/(M/c^2), смещение – отсчет/(M)
Авача	CM-3	SH(N E Z) v	0.7-20	128	11	$\frac{10.10^7}{10.10^7}$
i ibu iu	CIVI 5	EH(Z) v	4-20	120	11	$4.0^{\circ}10^{8}$
Алаид	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0 10 ⁷
		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Апача	CM-3–OC	BH(N, E, Z)v	0.02-7	100	24	3.1.109
	CM-3	SH (Z) v	0.7–40			$1.0^{-}10^{10}$
Байдарная	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0^{-}10^{7}$
Безымянный	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0^{-}10^{7}$
Беринг	CM-3–OC	BL(N, E, Z)v	0.02-7	200	16	$1.8 \cdot 10^7$
Ганалы	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4–20			$4.0^{-}10^{8}$
Горелый	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4–20			$2.0^{-}10^{8}$
Зелёная	CM-3	SH(N, E, Z)v	0.7–20	128	11	1.0 ⁻ 10 ⁷
Институт	СКД	LH(N, E, Z)x	0.04-1	128	11	$5.0^{-}10^{5}$
Каменистая	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4–20			$4.0^{-}10^{8}$
Каменское	STS-1 V/VBB	BB(N, E, Z)v	0.0027-10	20	24	$1.0^{-}10^{9}$
Карымский	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0.10^{7}$
		EH(Z)v	4–20			$3.0^{-}10^{8}$
Карымшина	СМ-3-КВ	SH(N, E, Z)v	0.5-40	150	24	$3.36 \cdot 10^8$
Киришев	CM-3	SH(N, E, Z)v	0.7–20	128	11	$1.0^{-}10^{7}$
Ключи	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
	KS2000	BH(N, E, Z)v	0.01-40	100	24	$2.0^{-}10^{9}$
Козыревск	CM-3	SH (N, E, Z) v	0.7-20	128	11	$1.0^{-}10^{7}$
Копыто	CM-3	SH (N, E, Z) v	0.7-20	128	11	$1.0^{-}10^{7}$
Коряка	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4–20	128	11	$4.0^{-}10^{8}$
Крестовский	CM-3	SH (N, E, Z) v	0.7-20	128	11	$1.0^{-}10^{7}$
Крутоберегово	CM-3–OC	BH(N, E, Z)v	0.02-7	100	24	$1.7 \cdot 10^7$
	CM-3	SH(Z)v	0.7–40			$1.0^{-}10^{10}$
	CMG-5T	HN (N, E, Z) a	0–40			5.3 ⁻ 10 ⁵
Крутоберегово-1	CM-3	SH(N, E, Z)v	0.7–20	128	11	1.0.107
		EH(Z)v	4-20			$4.0^{-}10^{8}$

Название станции	Тип датчика	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(M/c), акселерограф – отсчет/(M/c^2), смещение – отсчет/(M)
Логинов	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0 ⁻¹⁰⁷
		EH (Z) v	4–20			$4.0^{-}10^{8}$
Мал. Ипелька	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.10
		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Мыс Козлова	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Налычево	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Occopa	CM-3	SH (N, E, Z) v	0.7–40	100	24	$2.4^{\circ}10^{10}$
Паужетка	CM-3–OC	BH (N, E, Z) v	0.02-7	100	24	3.5.109
	CM-3	SH (Z) v	0.7–40			$1.0^{-}10^{10}$
Петропавловск	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.10 ⁷
1		EH (Z) v	4–20	128	11	$4.0^{\circ}10^{8}$
	STS-1 V/VBB	BB(N, E, Z)v	0.0027-10	20	24	$1.0^{\circ}10^{9}$
	FBA-23	HN (N, E, Z) a	0–40	80	24	$5.3 \cdot 10^4$
	GS-13	SH (N, E, Z) v	0.7–20	40	24	$4.0^{\circ}10^{9}$
Русская	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
-		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Седловина	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Семкарок	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
Сомма	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
		EH (Z) v	4–20			$4.0^{\circ}10^{8}$
Сорокина	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
Срединный	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
Тиличики	CM-3	SH (N, E, Z) v	0.7–40	100	24	2.4^{-10}
	CMG-5T	HN (N, E, Z) a	0–40			$5.35 \cdot 10^5$
Тумрок	CM-3	SH (N, E, Z) v	0.7–20	128	11	1.0.107
Угловая	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4–20			$4.0^{-}10^{8}$
Цирк	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
Шипунский	CM-3	SH (N, E, Z) v	0.7–20	128	11	$1.0^{-}10^{7}$
		EH (Z) v	4-20			$3.0^{\circ}10^{8}$
Эссо	CM-3–OC	BH(N, E, Z)v	0.02-10	100	24	3.4.109
	CM-3	EH (Z) v	0.7–40			$1.0^{-}10^{10}$

Примечание. Символами «х», «v», «а» обозначены смещение, скорость, ускорение соответственно.

Таблица 3. Временные цифровые станции в эпицентральной зоне Олюторского землетрясения

№	Название	Региональ-]	Координаты	Время работы		
	станции	ный код	φ°, Ν	λ°, Ε	h _y , м	начало	окончание
1	Тиличики	ST01	60.431	166.060	40	02.05.2006	15.05.2006
2	Хаилино	ST02	60.959	166.854	100	02.05.2006	18.05.2006
3	Ледяная	ST03	60.983	166.225	160	02.05.2006	17.05.2006

Таблица 4. Данные об аппаратуре с аналоговой записью на станции Петропавловск в 2006 г.

Станция	Начало работы прибора	Тип прибора	Компо- нента	V _{max}	$\Delta T_{\rm max},$	Скорость развертки, мм/мин	Носитель
Петропавловск	01.01.1971	СКД КПЧ	N, E, Z	100	0.2-16.7	30	Фотобумага
	01.05.1976	ДС-БП	N, E, Z	200	4–55.5	12	Тепловая бумага

Рис. 2. Карта энергетической представительности землетрясений *K*_{min} и сеть сейсмических станций Камчатки в период 2–15 мая 2006 г. в Олюторском районе во время работы временной локальной сети

1, 2 – цифровая сейсмическая станция, стационарная и временная автономная соответственно; 3 – изолиния K_{\min} ; 4 – граница зоны ответственности региональной сети КФ ГС РАН.

Анализ сейсмичности проведен для территории в пределах границ региона, указанных в [9]. Всего в 2006 г. локализованы 8863 землетрясения с $K_{\rm S}$ =3.7–15.7, из них 1224 с $K_{\rm S}$ ≥8.6 помещены в каталог [10] в наст. сб. (1172 находится внутри зоны ответственности, 52 – вне). В верхней строке табл. 5 дано распределение $N(K_{\rm S})$ всех обработанных землетрясений, в нижней – лишь внутри границ ответственности. Суммарная высвобожденная внутри границ региона сейсмическая энергия составила ΣE =64.02·10¹⁴ Дж, что почти на порядок выше ее среднегодового значения ($\Sigma E_{\rm cp}$ =8·10¹⁴ Дж) за 1962–2005 гг.

Таблица 5. Распределение числа землетрясений по энергетическим классам *K*_S и суммарная сейсмическая энергия Σ*E* в 2006 г.

Ks	4	5	6	7	8	9	10	11	12	13	14	15	16	N_{Σ}	ΣЕ, 10 ¹⁴ Дж
$N_{\rm BCEFO}$	67	756	2360	2765	1691	797	267	113	26	16	2	2	1	8863	64.07
$N_{ m 30Ha\ OTB}$	67	756	2360	2765	1683	778	240	108	26	15	2	2	1	8803	64.02

На рис. 3 а, б представлены ежесуточные числа N землетрясений с $K_S \ge 8.6$ и величина накопленной энергии ΣE . Абсолютный максимум N(t) и последующий шлейф больших значений этого параметра в апреле на рис. 3 а связан с мощной серией афтершоков [11] упомянутого выше Олюторского землетрясения 20 апреля в $20^h 24^m$ с $K_S = 15.7$, Mw = 7.6. Его сильнейшим ($K_S = 14.7$, Mw = 6.6) афтершоком 22 мая вызван второй всплеск активности. Эта же серия ответственна за скачки накопленной энергии на рис. 3 б (подробному описанию Олюторского землетрясения и сейсмичности его очаговой зоны посвящена отдельная статья [12] в наст. сб.). В любое другое время 2006 г. временной ход N(t) почти стационарный. Небольшая же ступень на рис. 3 б в августе имеет причиной наиболее сильное ($K_S = 14.3$, Mw = 6.5) событие 24 августа с $h = 38 \kappa M$ [10, 13] в Тихом океане напротив южной оконечности п-ва Камчатка в поверхностном слое зоны субдукции.

Рис. 3. Графики изменения во времени суточных чисел N землетрясений с $K_s \ge 8.6$ (а) и величины накопленной сейсмической энергии ΣE (б) в 2006 г. для зоны ответственности сети КФ ГС РАН

На рис. 4 а дана карта эпицентров всех землетрясений с $K_{\rm S} \ge 8.6$ и вертикальные разрезы гипоцентров (поперечный A-A' и продольный B-B'). Сильных ($K_{\rm S} \ge 11.6$) землетрясений в 2006 г. было 47, из них 20 – афтершоки Олюторского землетрясения. Один толчок (2) зафиксирован вне зоны ответственности.

Ощутимых землетрясений с интенсивностью I=2-9 и более 9 баллов [10, 14] произошло в 2006 г. $N_{\text{ощ}}=98$, из них 35 – афтершоки Олюторского землетрясения. Наибольшую интенсивность сотрясений с I>9 баллов на переправе через р. Авьенваям вызвало Олюторское землетрясение (9 на рис. 4). В г. Петропавловске-Камчатском ощущалось 27 землетрясений (с $K_{\text{S}}=9.9-14.3$) с интенсивностью от I=2 до I=4-5 баллов, верхний уровень вызван южным землетрясение ем (38) с $K_{\text{S}}=14.3$, Mw=6.5 [13].

Рис. 4. Карта эпицентров землетрясений Камчатки (*K*_S≥8.6) (а) и глубинные разрезы на вертикальные плоскости А–А' (б) и В–В' (в) за 2006 г.

1 – энергетический класс K_S; 2 – глубина гипоцентра *h*, км; 3 – граница региона; 4 – линия разрезов вкрест (*A*−*A*') и вдоль (*B*−*B*') фокальной зоны; 5 –изобаты 6000 и 7000 м; числа 1–47 соответствуют номерам сильных (K_S≥11.6) землетрясений в каталоге [10].

Механизмы очагов определены по знакам первых вступлений объемных волн для 41 землетрясения с $K_{\rm S} \ge 11.6$ [15] по программе FA2002 [16, 17]. Из распределения землетрясений по типам подвижек в табл. 6 виден ежегодно преобладающий тип – взбросо-сдвиг (47% событий). Относительно предыдущих данных заметно возросло число сдвиговых механизмов (26% в 2006 г. против 6 и 8% в 2005 и 2004 гг. соответственно [18, 19]), что, возможно, связано с присутствием в магистральном сейсморазрыве Олюторского землетрясения отрезка с правосдвиговым типом деформаций [12]. Чисто взбросовых и сбросовых подвижек в очагах не зафиксировано (табл. 6).

Тип подвижки	Номера землетрясений по [10]	$N_{ m i}$	$N_{\rm i}/N_{\Sigma},$ %
Сброс		0	0
Сбросо-сдвиг	23, 28, 30, 34, 42, 44, 45	7	15
Взброс		0	0
Взбросо-сдвиг	1-4, 7-9, 13-15, 17, 19, 21, 27, 32, 33, 35, 36, 38-40, 46	22	47
Сдвиг	5, 6, 16, 18, 20, 22, 24, 29, 31, 37, 41, 43	12	26
Не определен	10–12, 25, 26, 47	6	13
Сумма		47	100

Таблица 6. Распределение землетрясений Камчатки и Командорских островов по типам подвижек в их очагах

Схема разбиения региона на тектоно-географические структуры или зоны в 2006 г. несколько изменена. Новая схема дана на рис. 5 а, старая (по [20]) – на рис. 5 б. Основные изменения сделаны в северной части региона, где две небольшие слабосейсмичные зоны № 7, № 8 (рис. 5 б) объединены в зону № 9 (рис. 5 а) (с небольшим изменением границ), названную «Залив Шелихова». Наоборот, зона № 6 (рис. 5 б, «Корякия») разделена на две: № 7 – «Корякский сейсмический пояс», № 8 – «Берингово море» (рис. 5 а). Отметим, что зона № 8 практически асейсмична – в ней землетрясения происходят лишь иногда, в ее северо-восточной части. На две части с рис. 5 б разделена также зона № 1 («Камчатская сейсмофокальная зона» [20]): на зону № 2 – «Северную часть Камчатской сейсмофокальной зоны», начинающуюся от Авачинской губы, и зону № 1 – «Курилы и Южная Камчатка» (рис. 5 а). В [20] такое разделение существовало только для нижнего слоя с $h>350 \kappa m$, теперь же – для всех глубин. Это соответствует современным представлениям о существенно различном возрасте возникновения северного и южного сегментов Камчатской сейсмофокальной зоны [21]. Остальные границы оставлены без изменения, в том числе и наклонные, детально описанные в [20].

Рис. 5. Поверхностное сечение сейсмических зон Камчатского региона и его окрестностей: а – предлагаемая в наст. статье схема; б – схема из [20]; в – карта-схема тектонических плит северо-западной окраины Тихого океана

Цифрами на рис. 5 а обозначены следующие тектоно-географические структуры (зоны): 1 – Сейсмофокальная зона Курил и Южной Камчатки; 2 – Северная часть Камчатской сейсмофокальной зоны; 3 – Командорский сегмент Алеутской дуги; 4 – Тихий океан; 5 – Северные Курилы; 6 – Континентальные области Камчатки; 7 – Корякский сейсмический пояс; 8 – Берингово море; 9 – Залив Шелихова; 10 – Охотия. Названия зон из [20] здесь не приводятся. Пунктирная линия – граница зоны ответственности региональной сети КФ ГС РАН.

Зоны № 1–№ 10 разделены на три слоя: І – поверхностный ($h=0-70 \ \kappa m$); ІІ – промежуточный ($h=71-350 \ \kappa m$); ІІІ – глубокий ($h>350 \ \kappa m$), принадлежность к которым в каталоге [10] указывается для каждого землетрясения. Исключение составляет зона № 2 – «Северная часть Камчатской сейсмофокальной зоны», с границей на уровне $h=380 \ \kappa m$ между промежуточным и глубоким слоем. Этот слой в каталоге [10] имеет префикс «а».

Приведем краткое описание выделенных зон сейсмичности Камчатского региона. Весь объем, занимаемый землетрясениями, происходящими на границе плиты, погружающейся в Камчатскую зону субдукции, разделен на две структуры: Сейсмофокальную зону Курил и Южной Камчатки (зона № 1) и Северную часть Камчатской сейсмофокальной зоны (зона № 2). Их восточная вертикальная граница проведена по оси глубоководного желоба и отделяет взбросовые и надвиговые очаги землетрясений верхнего края зоны субдукции от преимущественно сбросовых очагов океанического вала, отнесенных к зоне Тихого океана (№ 4).

Северо-западная граница зон № 1 и № 2 достигает поверхности значительно западнее глубоководного желоба, вблизи побережья, во внутренней части камчатских заливов. При этом два полуострова – Шипунский и Кроноцкий – оказываются почти полностью в пределах этих зон. Это связано с тем, что на сегодняшний день недостаточная точность определения глубин землетрясений, происходящих восточнее побережья Камчатки (т.е. в районе пологого участка зоны субдукции), не позволяет отличить события, происходящие на главной поверхности субдукции, от землетрясений в верхней нависающей плите. Таким образом, к сейсмофокальной зоне (№ 1 и № 2) отнесены все землетрясения, происходящие в районе ее пологого участка, независимо от их формально определенной глубины. Северо-западная граница в целом наклонно падает под континент, имея перегиб на глубине 70 км, но в деталях имеет сложную форму, соответствующую реальному распределению сейсмичности. Аналогично сложную трехмерную форму имеют границы зон в районе сочленения Камчатки с Командорским сегментом Алеутской дуги. Южная граница зоны № 1 для региона определяется границами ответственности камчатской сети и ограничена широтой $\phi=49^{\circ}$.

Согласно современным тектоническим представлениям [21], северная часть современной Камчатской зоны субдукции (севернее Авачинского залива) значительно моложе (на 2–7 млн лет) ее южной части. За это время северный участок погружающейся плиты еще не успел опуститься до типичных максимальных глубин, на которых южнее наблюдаются многочисленные землетрясения. Действительно, в районе Авачинского залива, точнее, поперечной Авачинской вулканотектонической структуры, происходит резкое изменение максимальных глубин подавляющего большинства землетрясений с h=650 до $h=380 \ \kappa m$ (рис. 4 б). Однако необходимо отметить, что за все время наблюдений в северной области все же произошло несколько землетрясений с глубиной до 550 κm , хотя некоторые из них могут быть связаны с ошибками локации их гипоцентров. Все они произошли недалеко от границ области, и, возможно, только отражают факт несовершенства упрощенной модели, в которой поперечная Авачинская структура является плоскостью во всем интервале глубин.

Опираясь на изложенные факты, представляется необходимым разделить протяженную Курило-Камчатскую сейсмофокальную область на две зоны: № 1 – «Сейсмофокальную зону Курил и Южной Камчатки»; № 2 – «Северную часть Камчатской сейсмофокальной зоны» (табл. 7). Напомним, что граница промежуточного и глубокого слоев в зоне № 2 проходит на глубине $h=380 \ \kappa m$, во всех других – $h=350 \ \kappa m$.

Командорский сегмент Алеутской дуги (зона № 3) включает в себя землетрясения, происходящие на границах Командорской микроплиты, зажатой между двумя значительно более крупными образованиями: медленной плитой Берингией [22] на севере и быстро перемещающейся на северо-запад Тихоокеанской плитой [23]. Командорская микроплита (рис. 5 в) шириной менее 100 км протянулась на ~500 км в направлении, практически параллельном вектору движения Тихоокеанской плиты, и отделена от последней трансформной границей, проходящей по Алеутскому глубоководному желобу. В очагах землетрясений на обеих параллельных границах Командорской микроплиты преобладают правые сдвиги [24]. На западе Командорская микроплита упирается в небольшой блок п-ва Камчатского мыса, который в свою очередь имеет сложную трехмерную границу с континентальной Камчаткой. Эти две мелкие структуры объединены в единую зону № 3.

Зона № 4 «Тихий океан» объединяет землетрясения, происходящие на океаническом валу за глубоководным желобом. В их очагах наблюдается сбросовый тип подвижки [24]. Географическое положение остальных зон ясно из рис. 5 а. Их границы либо совпадают с предыдущими в [20], либо вертикальны.

В зоне № 5 «Северные Курилы» происходят землетрясения, эпицентры которых локализованы на Северных Курилах, но вне зоны субдуции. Гипоцентры этих землетрясений лежат значительно выше сейсмофокальной зоны, и их природа отличается от субдукционных событий.

Гипоцентры землетрясений зоны № 6 «Континентальные области Камчатки» также располагаются выше зоны субдукции, как правило, в поверхностном слое. Сейсмичность этой зоны определяется тектоническими движениями по разломам земной коры, а также связана с активностью действующих вулканов Камчатки.

Охотия (зона № 10) включает в себя мелкофокусные землетрясения в Охотском море, происходящие выше зоны субдукции и имеющие отличающуюся от последней тектоническую природу.

В зонах № 9 («Залив Шелихова») и № 7 («Корякский сейсмический пояс») происходят землетрясения, принадлежащие континентальным сейсмическим поясам – границам плит, образованным преимущественно мелкофокусными землетрясениями.

Зона № 8 («Берингово море») почти асейсмична. Однако формально в ее границах зафиксировано несколько землетрясений, попавших в нее, возможно, вследствие ошибок в определении гипоцентров.

Рассмотрим особенности сейсмического процесса региона по зонам № 1–№ 10, показанным на рис. 5 а. В табл. 7 представлены некоторые их статистические характеристики на двух энергетических срезах ($K_S \ge 8.6$ и $K_S \ge 11.6$), а также средние значения за весь период инструментальных наблюдений с 1962 по 2005 г. При этом учитывались лишь землетрясения, входящие в зону ответственности КФ ГС РАН. В зонах № 8 и № 10 таких землетрясений в 2006 г. не было.

№	Зона	Слой	(Средни 3а1962	е значени 2–2005 гг.	R	Значения за 2006 г.			
			N	$N/N_{\Sigma},$	N	ΣE ,	N	N/N_{Σ} ,	N	ΣE ,
			$(K_{\rm S} \ge 8.6)$	%	$(K_{\rm S} \ge 11.6)$	1014 Дж	$(K_{\rm S} \ge 8.6)$	%	$(K_{\rm S} \ge 11.6)$	10 ¹⁴ Дж
1	2	3	4	5	6	7	8	9	10	11
1	Сейсмофокальная зона Курил	Ι	196	22.0	10	1.36	205	17.49	5	2.44
	и Южной Камчатки	II	40	4.5	2	0.14	54	4.61		0.01
		III	4	0.4	<1	0.04	18	1.54		< 0.01
2	Северная часть Камчатской	Ι	342	38.5	12	1.49	212	18.09	8	0.18
	сейсмофокальной зоны	IIa	85	9.6	2	2.82	45	3.84	2	0.95
3	Командорский сегмент	Ι	113	12.7	5	1.31	136	11.60	7	0.31
	Алеутской дуги	II	1	0.1	<1	< 0.01	1	0.09		< 0.01
4	Тихий океан	Ι	51	5.8	1	0.11	43	3.67	3	0.19
5	Северные Курилы	Ι	1	0.2		< 0.01	1	0.09		< 0.01
6	Континентальные области	Ι	43	4.9	<1	0.12	5	0.43		< 0.01
	Камчатки									
7	Корякский сейсмический	Ι	9	1.0	<1	0.53	449	38.29	21	59.92
	пояс	-			-					
8	Берингово море	Ι	< 0.02	< 0.01	0	< 0.01				
9	Залив Шелихова	Ι	1	0.1	<1	< 0.01	3	0.26	0	< 0.01
10	Охотия	Ι	1	0.1	0.02	< 0.01				
	Всего		888	100	33	8	1172	100	46	64.05

Таблица 7. Распределение числа землетрясений с K_S≥8.6 и K_S≥11.6, а также величины выделенной энергии по зонам за 2006 г. в сопоставлении с их средними значениями за период 1962–2005 гг.

Примечание. В графе 3 цифрами I, II и III обозначены поверхностный (0≤h≤70 км), промежуточный (70<h≤350 км) и глубокий (h>350 км) слои соответственно. Промежуточный слой зоны № 2 имеет отличные от других зон границы (70<h≤380 км) и обозначается II а.

Как следует из табл. 7, наибольшая разница годовых и средних значений как по числу землетрясений (*N*=449 в 2006 г. вместо *N*=9 в 2005 г. [18]), так и по суммарной энергии

($\Sigma E=59.92 \cdot 10^{14} \ \square \pi e$ вместо $\Sigma E=0.53 \cdot 10^{14} \ \square \pi e$) получена в зоне № 7 – «Корякском сейсмическом поясе» в результате Олюторского землетрясения, где произошла почти половина сильных землетрясений региона. Заметно также некоторое увеличение числа землетрясений в зоне № 1 во всех трех интервалах глубин ($205 \rightarrow 196$; $54 \rightarrow 40$; $18 \rightarrow 4$, табл. 7), хотя по энергии увеличение присутствует лишь в поверхностном слое ($\Sigma E=2.44 \ \square \pi e$ вместо $\Sigma E=1.36 \ \square \pi e$, табл. 7). Напротив, в зоне № 2 в обоих слоях (I и IIa, табл. 7) наблюдается снижение сейсмической активности и в числе землетрясений ($212 \rightarrow 342$; $45 \rightarrow 85$), и в суммарной энергии ($\Sigma E=0.18 \ \square \pi e$ вместо $\Sigma E=1.49 \ \square \pi e$; 0.95 \rightarrow 2.82). В остальных зонах есть лишь незначительные отклонения параметров сейсмического режима от многолетних среднегодовых значений.

Эффект группируемости землетрясений. По данным детальных наблюдений землетрясения на Камчатке реализуются как в виде одиночных, так и групп типа форшоки-афтершоки или рой. Доля группирующихся событий от общего числа землетрясений за период 1962–2005 гг. составляет 22%; для сильных ($K_{\rm S} \ge 11.6$) землетрясений этот эффект выше (42%). Конкретно в 2006 г. число группирующихся землетрясений значительно выросло как для всех землетрясений (до 51%), так и для сильных (до 83%). Причина – афтершоковый процесс в очаге Олюторского землетрясения. Сравнительная статистика группирующихся событий с главными событиями $K_{\rm max} \ge 11.6$ за 1962–2005 гг. и 2006 г. дана в табл. 8 по наиболее сейсмоактивным зонам Камчатки. Анализ группируемости землетрясений проведен по каталогу афтершоков, предоставленному Н.М. Кравченко (КФ ГС РАН).

№ зоны	Тектоно-географическая структура (зона)	N_{Σ} (K _S ≥ 11.6)	$N_{\Sigma rp}$ (K _S \geq 11.6)	$N_{\Sigma rp}/N_{\Sigma,}$ %	$n_{\rm rp}$
	1962–2005 гг.	1			
1	Сейсмофокальная зона Курил и Южной Камчатки	599	212	35	67
2	Северная часть Камчатской сейсмофокальной зоны	597	293	49	102
3	Командорский сегмент Алеутской дуги	211	94	44	33
4	Тихий океан	59	15	25	8
6	Континентальные области Камчатки	27	22	81	9
7	Корякский сейсмический пояс	17	10	59	2
	2006 г.				
1	Сейсмофокальная зона Курил и Южной Камчатки	5	4	80	3
2	Северная часть Камчатской сейсмофокальной зоны	10	8	80	6
3	Командорский сегмент Алеутской дуги	7	5	71	4
4	Тихий океан	4	1	25	1
6	Континентальные области Камчатки				
7	Корякский сейсмический пояс	21	21	100	1

Таблица 8. Распределение числа сильных (*K*_S≥11.6) группирующихся землетрясений по тектоно-географическим структурам Камчатки в 1962–2005 гг. и 2006 г.

Примечание. *N*_Σ, *N*_{Σгр} – общее число всех землетрясений и группирующихся соответственно; *n*_{гр} – число групп, зафиксированных в зоне за 1962–2005 и 2006 гг..

Как следует из табл. 8, доля группирующихся землетрясений максимальна в континентальных областях Камчатки, что, по-видимому, является характерной особенностью этой зоны. Довольно высок процент групповых землетрясений для Корякского сейсмического пояса, что связано с низкой фоновой активностью этой структуры, а также отсутствием сети, позволяющей регистрировать слабые землетрясения. Довольно высокая степень группируемости отмечается в Командорском сегменте Алеутской дуги (№ 3) и в Северной части Камчатской сейсмофокальной зоны (№ 2).

Статистика группирующихся землетрясений в 2006 г. несколько отличается от многолетней. Корякский сейсмический пояс сохраняет свое лидирующее положение, а в континентальных областях Камчатки наблюдается отсутствие групп землетрясений и значительное снижение сейсмической активности – здесь не было зафиксировано ни одного землетрясения с $K_{\rm S} \ge 11.6$. Перечень группирующихся землетрясений в 2006 г. представлен в табл. 9.

Зона	N⁰	Н	ачало	Пара	метр	ы макси	імаль і	ного		Пај	раметры	группы	
		Дата,	t_0 ,	Kmax	Mw,	MPSP,	h.	N⁰	N	Ν	ΣE ,	<i>h</i> ,	N⁰
		д м	ч мин с	max	[25]	[26]	км	[10]	(все)	$(K_{\rm S} \ge 8.6)$	10 ¹⁴ Дж	км	[10]
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Сейсмофокальная	1	31.07	18 36 09.6	12.9	5.1	5.5	17	33	23	17	0.09	4-40	33, 42
зона Курил и	2	20.08	03 01 00	13.5	6.0	5.8	37	37	13	6	0.32	32–75	37
Южной Камчатки	3	24.08	21 50 34.1	14.3	6.5	6.0	38	38	95	15	2.00	0–53	38
Северная часть	4	22.05	13 08 00.5	13.5	6.2	6.3	213	28	11	2	0.32	193–213	28
Камчатской	5	24.05	14 36 55.8	11.6		4.7	44	30	18	3	< 0.01	11–44	30
сейсмофокальной	6	27.05	13 45 37.4	11.3		4.8	9		223	20	< 0.01	9–53	
зоны	7	14.07	00 37 26.2	11.6		5.0	24	31	44	3	< 0.01	24-30	31
	8	17.08	01 22 45.4	11.7		5.0	36	35	42	2	0.01	8–36	35
	9	17.08	11 11 34.7	13.8	5.7	6.0	82	36	22	4	0.63	25-82	36
	10	01.09	22 07 26.7	11.6		5.1	40	40	38	7	< 0.01	31-40	40
	11	03.12	04 52 31.1	12.3	5.1	5.3	29	44	29	10	0.04	5–29	44, 45
Командорский	12	06.02	05 51 30.0	11.9	5.8	5.2	20	1	72	12	0.01	13-30	1
сегмент Алеутской	13	12.04	01 06 51.0	13.1	6.0	5.5	1	5	257	33	0.14	1-29	5,6
дуги	14	19.04	03 24 40.7	13	5.1	5.3	23	8	14	6	0.10	19–24	8
	15	29.07	19 05 14.5	11.6		4.6	4	32	46	2	< 0.01	4–9	32
Тихий океан	16	18.05	23 04 43.1	12.9	5.7	5.9	36	23	10	2	0.08	36-40	23
Корякский сейс-	17	20.04	23 24 57.8	15.7	7.6	6.8	1	9	2911	446	59.92	0–38	9-22,
мический пояс													24–27,
													29, 41, 43

Таблица 9. Основные сведения о группах землетрясений с *K*_{max}≥11.6, отмеченных в регионе в 2006 г.

Примечание. В графах 6, 7 даны магнитуды *Mw*(HRVD) [25] и *MPSP*(MOS) [26] соответственно; в графах 10, 11 приводятся числа землетрясений в группе, всех и с *K*_S≥8.6 соответственно.

Далее рассмотрим сейсмичность по отдельным зонам из табл. 7.

В 2006 г. сейсмофокальная зона Курил и Южной Камчатки (№ 1) по числу землетрясений с $K_S \ge 8.6 (N_\Sigma = 277)$ и суммарной энергии ($\Sigma E = 2.45 \cdot 10^{14} \ \mathcal{Д} \mathscr{W}$) является второй после Корякского сейсмического пояса (№ 7), где $N_\Sigma = 449$ и $\Sigma E = 59.92 \cdot 10^{14} \ \mathcal{J} \mathscr{W}$ (табл. 7). Произошедшие в первой зоне 277 землетрясений составляют почти четверть (23.6%) от общего числа $N_\Sigma = 1172$ землетрясений с $K_S \ge 8.6$ (табл. 7) и распределились по трем глубинным слоям зоны следующим образом: поверхностных – N = 205 (17.5%), промежуточных – N = 54 (4.6%), глубоких – N = 18 (1.5%). Карта эпицентров землетрясений, а также диаграммы механизмов очагов в проекции нижней полусферы с указанием типа подвижки показаны на рис. 6.

Несмотря на то, что в 2006 г. в зоне № 1 зафиксировано всего пять сильных ($K_S \ge 11.6$) поверхностных событий (4, 33, 37, 38, 42), что в два раза меньше среднегодовых показателей, высвобожденная энергия в их очагах составила $\Sigma E=2.4 \cdot 10^{14} \ \mathcal{A} \mathscr{K}$, что почти в полтора раза превышает среднегодовое значение этого параметра за период 1962–2005 гг. (табл. 7). Это связано с тем, что 24 августа в $21^{h}50^{m}$ в Тихом океане, недалеко от юго-восточного побережья Камчатки произошло землетрясение (38 на рис. 6) с $K_{S}=14.3$, $M \mathscr{W}=6.5$, $h=38 \ \kappa M$, которое является сильнейшим и наиболее ощутимым событием 2006 г. на территории Камчатки, без учета землетрясений Корякского автономного округа, а также одним из самых сильных поверхностных событий в районе Южной Камчатки за весь период детальных сейсмологических наблюдений. Более подробно событие (38) описано в статье [13] наст. сб.

Небольшая группа землетрясений с главным толчком (37) была зарегистрирована в зоне $\mathbb{N} \ge 1$ юго-восточнее о. Парамушир. Землетрясение (37) с $K_{\rm S}$ =13.5, Mw=6.0, MPSP=5.8, h=37 км (табл. 9), зафиксированное 20 августа в 03^h00^m, вызвало в ближайшем (Δ =135 км) населенном пункте – г. Северо-Курильске, расположенном на о. Парамушир, сотрясения с интенсивностью *I*=5 баллов. Землетрясение возникло под действием близких по величине напряжений растяжения и сжатия ($PL_{\rm T}$ =3°, $PL_{\rm P}$ =18°[15]), ориентированых на юго-запад и юго-восток соответственно (рис. 6). По обеим возможным плоскостям разрыва наблюдается сдвиговая подвижка, осложненная несущественной сбросовой компонентой.

Рис. 6. Карта эпицентров землетрясений Курило-Камчатской зоны субдукции (зоны № 1 и № 2) за 2006 г.

1–3 – эпицентры сильных ($K_{\rm S} \ge 11.6$) землетрясений и типы подвижки (1 – сбросо-сдвиг, 2 – сдвиг, 3 – взбрососдвиг); 4 – стереограмма механизма очага в проекции нижней полусферы (число возле нее соответствует номеру землетрясения в каталоге [10]); 5 – номер зоны на рис. 5; 6 – граница зоны (линиями – сплошной, пунктирной, двойной штрихпунктирной и штрихпунктирной – показаны границы слоев с h=0, h=70, h=350 или 380 км соответственно); 7 – граница региона; 8–10 – эпицентры землетрясений с $K_{\rm S} \ge 8.6$ в поверхностном, промежуточном и глубоком слоях соответственно; 11 – изобаты 6000 и 7000 м.

На западном склоне Курило-Камчатского глубоководного желоба, южнее Авачинского залива, отмечено два сильных землетрясения (33, 42): 31 июля – в $18^{h}36^{m}$ с $K_{s}=12.9$, Mw=5.1, MPSP=5.5, $h=17 \ \kappa m$; 12 сентября – в $10^{h}59^{m}$ с $K_{s}=11.8$, MPSP=5.0, $h=40 \ \kappa m$. Они произошли в составе одной группы, продолжавшейся в этом районе в течение нескольких месяцев. Главный толчок (33) роя, а также одиночное землетрясение (4) с $K_{s}=11.9$, Mw=4.7, $h=43 \ \kappa m$, реализовавшеся в южной части Авачинского залива 2 марта в $11^{h}41^{m}$, имеют характерные для сейсмофокальной зоны взбросовые подвижки по наклонным плоскостям разрывов северо-восточного простирания при близгоризонтальной ориентации осей напряжения сжатия.

В Северной части Камчатской сейсмофокальной зоны (\mathbb{N} 2) в 2006 г. произошло 257 (21.9%) землетрясений с $K_S \ge 8.6$, из них поверхностных – N=212 (18.1%) и промежуточных –N=45 (3.8%). Глубокие (h>380 км) землетрясения в северной части Камчатской сейсмофокальной зоны происходят крайне редко, в 2006 г. таковых нет. Десять событий (28, 30, 31, 35, 36, 39, 40, 44–46) имели $K_S \ge 11.6$ (рис. 6), из них события (28, 36) относятся к промежуточному слою ($70 < h \le 380$ км), остальные – мелкофокусные ($h \le 70$ км). Большинство сильных землетрясений (28, 30, 31, 35, 36, 40, 44–45) этой зоны реализовались в составе роев. Землетрясения (39, 46) являются одиночными.

Доля группирующихся событий в зоне № 2 составила 80% от общего числа землетрясений с $K_{S} \ge 11.6$ (табл. 8). Среди них заметен немногочисленный, но самый сильный в зоне рой, произошедший в августе–сентябре. Главный его толчок (36) зарегистрирован в Камчатском заливе 17 августа в $11^{h}11^{m}$ – с $K_{S} = 13.8$, Mw = 5.7, MPSP = 6.0, $h = 82 \ \kappa m$ (табл. 9) и ощущался с интенсивностью I = 5 баллов в ближайшем ($\Delta = 76 \ \kappa m$) пункте ГМС «Семячики» [10].

Самая многочисленная группа с максимальным толчком $K_{\rm S}$ =11.6 локализована на побережье Кроноцкого п-ва (рис. 6). Активизация началась 27 мая с землетрясения в 13^h45^m с $K_{\rm S}$ =11.3, *MPSP*=4.8, *h*=9 км (табл. 9), и за первые пять дней отмечено 24 землетрясения с $K_{\rm S}$ =8.6–11.3. Далее активность пошла на спад, но до конца года было зафиксировано еще 13 событий с $K_{\rm S}$ ≥8.6. Эпицентральная зона роя имеет субширотное простирание на ~40 км. Объем роя в 2006 г. – 223 землетрясения с $K_{\rm S}$ =5.4–11.3, площадь S – около 700 км², суммарная сейсмическая энергия, выделившаяся в рое, составила ΣE =5.15·10¹¹ Дж.

На Шипунском п-ве 1 сентября в $10^{h}25^{m}$ зарегистрировано сильное ($K_{\rm S}$ =12.9, MPSP=5.8) одиночное землетрясение (39) с h=49 км. Движение в очаге произошло под действием напряжений сжатия северо-западного направления [15]. Дислокация представлена взбросовой подвижкой по обеим нодальным плоскостям с несущественной правосторонней сдвиговой компонентой по NP1 и левосторонней – по NP2. Землетрясение ощущалось с интенсивностью I=3–4 балла во всех пунктах, расположенных на побережье Авачинской бухты в наиболее густонаселенной части Камчатки. А на самом мысе сотрясения достигали I=5–6 баллов [10].

Отметим еще землетрясение (28) за 22 мая в $13^{h}08^{m}$ с $K_{s}=13.5$, Mw=6.2, h=213 км. Согласно [15], тип подвижки в его очаге – сброс по обеим нодальным плоскостям с незначительной сдвиговой компонентой, правосторонней – по NP1 и левосторонней – по NP2. Ось напряжения растяжения близгоризонтальна ($PL_{P}=8^{\circ}$) и ориентирована на юго-восток. Особенность этого землетрясения заключается в его макросейсмических проявлениях (см. табл. 10 и рис. 7).

N⁰	Пункт	Δ,	N⁰	Пункт	Δ,
		КМ			КМ
	5 баллов		8	Вилючинск	137
1	ГМС Семячики	76		<u>2 балла</u>	
	3-4 балла		9	Маяк Кроноцкий	137
2		150	10	Бухта Сторож	237
Z	і мс кроноки	159	11	Усть-Камчатск	329
	<u>3 балла</u>			Не ощущалось	
3	Маяк Круглый	232	12	Шаромы	49
	<u>2–3 балла</u>		13	Мильково	65
4	Раздольный	101	14	Коряки	102
5	Елизово	108	15	Завойко	131
6	Петропавловск	124	16	Сокоч	132
7	Рыбачий	135	17	Ист. Тумрокские	157

Таблица 10. Макросейсмические данные о землетрясении 22 мая 2006 г. с K_S=13.5, Mw=6.2

Рис. 7. Карта пунктов-баллов для землетрясения 22 мая 2006 г.

1 –инструментальный эпицентр землетрясения; 2 – интенсивность сотрясения в баллах; номера пунктов на карте соответствуют таковым в табл. 10.

Несмотря на небольшой объем макросейсмических данных для землетрясения 22 мая, на рис. 7 видно, что землетрясение ощущалось во всех населенных пунктах восточного побережья Камчатки, от Усть-Камчатска до маяка Круглый. Максимальная интенсивность сотрясений I=5 баллов зафиксирована на ГМС «Семячики» ($\Delta=76 \ \kappa m$), а в ближайших к эпицентру населенных пунктах, расположенных в верховье р. Камчатка (Шаромы – $\Delta=49 \ \kappa m$ и Мильково – $\Delta=65 \ \kappa m$), землетрясение не ощущалось. Зона проявления землетрясения располагается не вблизи эпицентра, а восточнее, на побережье Камчатки. Максимальная интенсивность наблюдалась в областях, расположенных на продолжении наклонного участка сейсмофокальной зоны. Похожая макросейсмическая картина уже описывалась ранее в [27] в случае Тумрокского-I и Тумрокского-II землетрясений 2003 г. и 2004 г., произошедших в промежуточном слое Камчатской сейсмофокальной зоны.

Тип движений, наблюдаемый в очагах землетрясений поверхностного слоя в зонах 1, 2, неоднородный [15]. Типичные для очагов зоны субдукции близгоризонтальные напряжения сжатия, направленные вкрест простирания сейсмофокальной зоны, наблюдаются в очагах восьми событий (4, 33, 35, 36, 38, 39, 40, 46) из 14. Иное направление простирания возможных плоскостей разрыва и сжимающих напряжений, полученное для событий (30, 31, 37, 42, 44, 45), может быть связано с неоднородностью структур района или невысокой точностью определения глубины очага.

В Командорском сегменте Алеутской дуги ($\mathbb{N} 3$) зафиксировано 137 землетрясений с $K_S \ge 8.6$, семь из которых имеют $K_S = 11.6 - 13.1$ (рис. 8), из них пять входят в состав четырех групп (табл. 9).

Рис. 8. Карта эпицентров землетрясений зон № 3-10 и прилегающих территорий за 2006 г.

1–4 – эпицентры сильных ($K_{\rm S} \ge 11.6$) землетрясений и типы подвижки (1 – сбросо-сдвиг, 2 – сдвиг, 3 – взбрососдвиг; 4 – механизм не определен); 5 – диаграмма механизма очага в проекции нижней полусферы (число около диаграммы соответствует номеру землетрясения в [10]); 6 – номер зоны согласно рис. 3; 7 – границы зон; 8 – граница региона; 9, 10 – эпицентры землетрясений с $K_{\rm S} \ge 8.6$ в поверхностном и промежуточном слоях соответственно; 11 – изобаты 6000 и 7000 *м*. У берегов о. Беринга зафиксировано два сильных события (7, 8 на рис. 8). Одиночное событие (7) произошло 13 апреля в $22^{h}05^{m}$ с $h=27 \ \kappa m$, с $K_{s}=12.6, Mw=5.2, MPSP=5.3$ [10]. Второе, породившее небольшой (N=14, табл. 9) рой, возникло 19 апреля в $03^{h}24^{m}$ с $h=23 \ \kappa m$, $K_{s}=13.0, Mw=5.1, MPSP=5.3$ [10]. Землетрясения локализованы на двух параллельных границах Командорской микроплиты, расположенной между двумя значительно более крупными плитами – Берингией и Тихоокеанской [22, 28]. В обоих очагах подвижки типа правосторонний сдвиг по субширотным плоскостям, что согласуется с предполагаемым механизмом скольжения на северо-запад микроплиты Берингии, параллельно движению Тихоокеанской плиты [29]). Оба толчка ощущались в пос. Никольское на о. Беринга: с I=4 балла при $\Delta=42 \ \kappa m$ и 3–4 балла при $\Delta=40 \ \kappa m$ соответственно [10].

Область Камчатского пролива, активизировавшаяся в середине 2005 г., оставалась сейсмически активной в течение всего 2006 года. Здесь 6 февраля в $05^{h}51^{m}$ произошло землетрясение (1) на глубине $h=20 \ \kappa m \ c \ K_{S}=11.9$, Mw=5.7. Спустя два месяца зафиксировано еще два сильных события (5, 6) – 12 апреля в $01^{h}06^{m}$ с $K_{S}=13.1$, Mw=6.0, $h=1 \ \kappa m \ u \ 13$ апреля в $08^{h}35^{m}$ с $K_{S}=12.1$, Mw=5.2, $h=17 \ \kappa m \ [10]$. Землетрясения (1, 5, 6) приурочены к разлому Беринга, расположенному на северо-восточной границе Командорской микроплиты. Рой землетрясений, вызванный событием (5), оказался самым многочисленным в зоне $N \ge 3$ в 2006 г. (табл. 9). Максимальные сотрясения с I=4-5 баллов, вызванные землетрясением (5), отмечены на территории Камчатского п-ва в поселках Усть-Камчатск ($\Delta \approx 120 \ \kappa m$) и Крутоберегово ($\Delta =107 \ \kappa m$). События (1, 6) также ощущались на побережье Камчатского п-ва и о. Беринга с $I \le 3-4$ балла [10].

В северо-западной части Командорского блока 29 июля в $19^{h}05^{m}$ произошло еще одно землетрясение (32) с K_{s} =11.6, *MPSP*=4.6, *h*=4 км. Оно зарегистрировано в районе мыса Африка, где Командорская микроплита сталкивается с Охотской плитой. По данным Гарварда [30], здесь реализуются землетрясения со взбросовым типом подвижки. Согласно региональным определениям [15], механизм этого землетрясения сходен с механизмами описанных выше событий (1, 5, 6) – в очаге наблюдается взбросо-сдвиговый тип подвижки. В пос. Усть-Камчатск ($\Delta \approx 40$ км) землетрясение (32) ощущалось с *I*=5 баллов [10].

В Тихом океане (зона № 4) произошло 43 землетрясения с $K_S \ge 8.6$, в том числе три сильных (3, 23, 34) с $K_S \ge 11.6$ (табл. 7): 23 февраля в $18^h 29^m$ с $h=19 \kappa M$, $K_S=12.0$, Mw=4.8; 18 мая в $23^h 04^m$ с $h=36 \kappa M$, $K_S=12.9$, Mw=5.7 и 4 августа в $07^h 45^m$ с $h=32 \kappa M$, $K_S=13.0$, Mw=5.5. Два из них (3, 23) располагаются на восточном склоне Курило-Камчатского глубоководного желоба, а событие (34) зафиксировано на юго-западном склоне Алеутского желоба, в северо-восточной части зоны № 4. Землетрясения, относящиеся к зоне Тихого океана, возникают в основном под действием напряжений растяжения. Подобная картина наблюдается для событий (23, 34). В очаге (3), расположенном юго-восточнее о. Парамушир, тип подвижки – сдвиг со взбросовой компонентой по обеим плоскостям разрыва, что более характерно для событий, происходящих в сейсмофокальной зоне. Учитывая, что это землетрясение зафиксировано вблизи южной границы зоны ответственности КФ ГС РАН, можно ожидать ошибок как в определении положения гипоцентра, так и в решении механизма его очага.

Зоны № 5 (Северные Курилы), № 6 (Континентальные области Камчатки) и № 9 (Залив Шелихова) в 2006 г. характеризуются низким уровнем сейсмической активности (рис. 8): в них нет землетрясений с $K_S \ge 11.6$, а число событий с $K_S \ge 8.6$ не превысило N=5 (табл. 7). Такая низкая сейсмичность характерна для зон № 5 и № 9, но не является типичной для зоны № 6.

Корякский сейсмический пояс (\mathbb{N} 7) – самая активная в 2006 г. структура. Как отмечено выше, здесь произошла сильнейшая за период детальных наблюдений (1961–2006 гг.) активизация, связанная с Олюторским землетрясением 20 апреля с $K_{\rm S}$ =15.7, Mw=7.6 и его афтершоками [12]. Зоны \mathbb{N} 8 (Берингово море) и \mathbb{N} 10 (Охотия) в 2006 г. были асейсмичны (рис. 8).

За пределами границ зоны ответственности сети КФ ГС РАН 7 февраля в $11^{h}50^{m}$ зарегистрировано единственное сильное (K_{s} =12.7, Mw=5.0) землетрясение (2) с h=40 км. Тип подвижки в его очаге – взбросо-сдвиг.

Сильные движения грунта от землетрясений 2006 г. описаны по данным цифрового акселерографического канала «LG» низкого увеличения широкополосной цифровой станции «Петропавловск» и цифрового акселерографа GSR-24 в пос. Тиличики в эпицентральной зоне Олюторского землетрясения [31, 32]. Зарегистрированные максимальные ускорения и скорости грунта, корректированные за АЧХ прибора, даны в табл. 11 для всех случаев, когда хотя бы одно значение ускорения превышало 0.5 *см/с*². Корректированные за прибор записи землетрясений 22 мая и 17 августа 2006 г. с наибольшими амплитудами и их сглаженные спектры Фурье, полученные на станции «Петропавловск», показаны на рис. 9. Спектры Фурье этих землетрясений имеют форму, характерную для Камчатских землетрясений [33].

№	Дата,	$t_0,$	Эпи	центр	h,	Δ,	Ks	Mw	MPSP	<i>I</i> ,	Код	Компо-	$V_{\rm max},$	$a_{\rm max},$
	0 M	<u>Ч МИН С</u>	φ°, Ν	λ°, Ε	км	КМ	11.4	[23]	[26]	оалл	C/CT	нента	СМ/С	СМ/С
1	04.01	07 19 10.2	52.48	160.02	58	99	11.4		5.0	2–3	PET	N	0.047	1.21
												E	-0.042	1.44
	02.02	11 41 01 1	52.44	150.14	42	72	11.0	47	5.0	2.2	DET	Z	0.028	0.82
2	02.03	11 41 21.1	52.44	159.14	43	13	11.9	4./	5.2	2-3	PEI		-0.053	-1.31
												E 7	-0.043	1.61
2	07.05	16 27 44 2	52.12	150.25	40	100	115		5.0	2.2	DET	L N	-0.024	-0.65
3	07.05	10 27 44.5	52.12	159.25	40	108	11.5		5.0	2-3	PEI		-0.024	0.74
												Е 7	-0.010	0.32
-1	00.05	11.02.20.1	60.74	166.02	5	25	12.0	57	50	67	THD	L N	-0.010	10.40
4	09.05	11 02 20.1	00.74	100.05	5	55	15.0	3.1	5.8	0-/	TILK		-1.92	10.0
												E 7	3.92	-33.0
	22.05	11 11 56 6	(0.75	166.10	2	26	147	((()	(7	TUD	L N	-2.1/	19.4
5	22.05	11 11 56.6	60.75	166.10	3	36	14.7	6.6	6.2	6-/	TILK	N E	/.51	49.6
												E	16.2	-90.8
	22.05	11 50 20 4	(0.7(166.01	0	27	11.0		1.0		THD		-6./5	-30.8
6	22.05	11 50 30.4	60.76	166.01	9	31	11.9		4.8		TILK	N	0.41	6.52
												E	1.31	-13.2
	22.05	12.04.40.6	(0.77	166.00	~	20	11.7		1.0		THD	Z	0.32	-4.14
7	22.05	12 04 49.6	60.77	166.20	5	38	11.7		4.9		TILR	N	0.41	-3.56
												E	0.43	-4.38
	22.05	12 00 00 5	54.10	1.50.01	010	115	10.5	()	6.0		DET	Z	-0.42	3.66
8	22.05	13 08 00.5	54.13	158.81	213	115	13.5	6.2	6.3	2-3	PET	N	0.35	-1.06
												E	0.15	-0.82
	24.05	15 44 40 4	(0.50	165.00	0	20	11.0	- 0			THE	Z	-0.27	-2.14
9	24.05	15 44 49.4	60.78	165.92	8	39	11.8	5.0	5.2		TILK	N	-0.53	4.23
												E	0.84	5.36
10	21.07	10.04.10		150 74	1.7	100	10.0	- 0		2	DET	Z	-0.32	-4.15
10	31.07	18 36 10	51.45	159.74	17	190	12.9	5.0	5.5	3	PET	N	-0.067	1.27
												E	-0.044	0.40
11	17.00	11 11 24 7	55.50	1 (0.10	00	207	12.0		6.0		DET	Z	0.023	-0.33
11	17.08	11 11 34.7	55.59	162.13	82	287	13.8	5.7	6.0		PET	N	-0.09	0.84
												E	-0.101	0.53
10	24.00	01 50 04 1	50.01	157.00	26	2(2	14.0	6.5	()	4.5	DET	Z	0.041	0.32
12	24.08	21 50 34.1	50.81	157.89	26	262	14.3	6.5	6.0	4–5	PET	N	-0.27	3.09
												E	-0.26	3.35
10	00.11	11 45 45 0	50 (5	150 (1	40	6.4	0.0		4.1	•	DET	Z	-0.12	-2.17
13	23.11	11 45 47.8	52.67	159.61	40	64	9.9		4.1	3	PET	N	-0.024	0.59
												E	0.029	-0.69
1.4	00.10	11.04.45.0	50.00	1.50.10	0.6	0.1	11.5			•	DET	Z	0.013	-0.53
14	22.12	11 04 47.0	52.92	159.12	96	21	11.5		5.0	3	РЕТ	N	-0.14	-3.92
												E	0.109	3.25
1.7	20.12	00.04.44.5	50.00	150.55	10		11 -		4 7		DET	Z	-0.058	-2.14
15	30.12	02 36 46.5	52.38	159.57	18	88	11.5		4.7		РЕТ	N	-0.021	0.56
												E	0.020	0.43
	1		1	1	1	1	1		1	1			0.0083	-0.24

Таблица 11. Максимальные скорости и ускорения грунта по записям землетрясений на станциях «Петропавловск» (РЕТ) и «Тиличики» (TILR) за 2006 г. ($a_{max}>0.5 \ cm/c^2$)

Примечания. Макросейсмическая интенсивность указана по данным станций «Петропавловск» (PET) и «Тиличики» (TILR).

Рис. 9. Акселерограммы землетрясений 22 мая в 13^h08^m (*a*) и 17 августа в 11^h11^m (б) – слева, а их сглаженные амплитудные спектры Фурье – справа, по данным широкополосной сейсмической станции «Петропавловск»

Литература

- 1. Олюторское землетрясение (20 (21) апреля 2006 г. Корякское нагорье). Первые результаты исследований / Отв. ред. В.Н. Чебров. Петропавловск-Камчатский: ГС РАН, 2007. 290 с.
- 2. Чебров В.Н., Сенюков С.Л. Сейсмологические наблюдения на территории Корякского автономного округа, оперативная обработка Олюторского землетрясения 20 (21) апреля 2006 г. *Мw*=7.6 и его афтершоков // Олюторское землетрясение 20 (21) апреля 2006 г., Корякское нагорье. Первые результаты исследований. Петропавловск-Камчатский: ГС РАН, 2007. С. 7–13.
- 3.Чебров В.Н., Воропаев В.Ф., Дрознин Д.В., Сергеев В.А., Шевченко Ю.В. Развитие сети цифровых сейсмических станций Камчатки // Геофизический мониторинг Камчатки. Материалы научнотехнической конференции. – Петропавловск-Камчатский: ГС РАН, 2006. – С. 13–20.
- 4. Федотов С.А., Зобин В.М., Гордеев Е.И., Иванова Е.И., Лепская Т.С., Митякин В.П., Синельникова Л.Г., Чиркова В.Н. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 155–169.
- 5. Гусев А.А. Определение гипоцентров близких землетрясений Камчатки на ЭВМ // Вулканология и сейсмология. 1979. № 1. С. 74–81.
- 6. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 117 с.
- 7. Дрознин Д.В., Дрознина С.Я. Интерактивная программа обработки сейсмических сигналов DIMAS // Сейсмические приборы. 2010. 46,. –№ 3. С. 22–34.
- 8. Комплексные сейсмологические и геофизические исследования геодинамических процессов в зоне сочленения Курило-Камчатской и Алеутской островных дуг. 2001–2005 гг. Отчет о НИР № 107054 / Рук. В.Н. Чебров. Петропавловск-Камчатский: КФ ГС РАН, 2006. 353 с.
- 9. Левина В.И., Иванова Е.И., Ландер А.В., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2002 год. Обнинск: ГС РАН, 2008. С. 215–225.

- 10. Левина В.И., Шевченко Н.А. (отв. сост.), Антипова О.Г., Бахтиарова Г.М., Карпенко Е.А., Кривогорницына Т.М., Ландер А.В., Леднева Н.А., Лепская Т.С., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Раевская А.А. Каталог землетрясений Камчатки и Командорских островов за 2006 г. (N=1261). (См. Приложение к наст. сб. на CD).
- 11. Левина В.И., Шевченко Н.А. (отв. сост.), Бахтиарова Г.М., Карпенко Е.А., Кривогорницына Т.М., Ландер А.В., Леднева Н.А., Лепская Т.С., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Раевская А.А. Каталог афтершоков (*N*=2911) Олюторского землетрясения 20.04.2006 г. с *Мw*=7.6. (См. Приложение к наст. сб. на CD).
- 12. Левина В.И., Ландер А.В., Митюшкина С.В., Иванова Е.И., Титков Н.Н. Олюторское землетрясение 20 апреля 2006 г. с *Мw*=7.6. См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 13. **Чеброва А.Ю., Митюшкина С.В., Иванова Е.И.** Землетрясение 24 августа 2006 г. с *Мw*=6.5, *I*₀=6–7 (Камчатка). См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 14. Митюшкина С.В. Макросейсмический эффект ощутимых землетрясений в населенных пунктах (*n*=395) Камчатки в 2006 г. (См. Приложение к наст. сб. на CD).
- 15. **Иванова Е.И. (отв. сост.).** Каталог механизмов очагов землетрясений Камчатки и Командорских островов за 2006 г. (*N*=41). (См. Приложение к наст. сб. на CD).
- 16. Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (отчет за 01.01.2003–31.12.2003 г.). Петропавловск-Камчатский: Фонды КФ ГС РАН, 2004. 350 с.
- 17. Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (отчет за 01.01.2005–31.12.2005 г.). Петропавловск-Камчатский: Фонды КФ ГС РАН, 2006. 478 с.
- 18. Чеброва А.Ю., Левина В.И., Иванова Е.И., Митюшкина С.В., Чебров В.Н., Раевская А.А., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 213–227.
- Чеброва А.Ю., Левина В.И., Чебров В.Н., Иванова Е.И., Митюшкина С.В., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 188–198
- 20. Левина В.И., Иванова Е.И., Ландер А.В., Чеброва А.Ю., Гусев А.А., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 181–192.
- Lander A.V., Shapiro M.N. The Origin of the Modern Kamchatka Subduction Zone // Volcanism and Subduction – The Kamchatka Region. AGU – Geophysical Monograph Series. – 2007. – 172. – P. 57–63.
- 22. Ландер А.В., Букчин Б.Г., Дрознин Д.В., Кирюшин А.В. Тектоническая позиция и очаговые параметры Хаилинского (Корякского) землетрясения 8 марта 1991 г.: существует ли плита Берингия? // Вычислительная сейсмология, Вып. 26. – М.: Наука, 1994. – С. 103–122.
- 23. Ландер А.В., Левин В.Е., Титков Н.Н. Современные движения Командорской микроплиты по сейсмологическим и GPS-данным // Вулканизм и геодинамика. Материалы IV Всероссийского симпозиума по вулканологии и палеовулканологии, Часть 2. – Петропавловск-Камчатский: ИВиС ДВО РАН, 2009. – С. 621–624.
- 24. Зобин В.М. Механизм очагов землетрясений и сейсмотектоническое деформирование Камчатско-Командорского региона // Вулканология и сейсмология. – 1987. – № 6. – С. 78–92.
- 25. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008. [Электронный pecypc]. *http://www.isc.ac.uk/search/index.html/2006*.
- 26. Сейсмологический бюллетень (ежедекадный) за 2006 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2006–2007. – [Электронный ресурс]. – *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2006*.
- 27. Левина В.И., Митюшкина С.В., Чеброва А.Ю., Иванова Е.И. Тумрокское-I землетрясение 16 июня 2003 г. с *Мw*=6.9, *I*₀=6 и Тумрокское-II землетрясение 10 июня 2004 г. с *Мw*=6.8, *I*₀=5–6 (Камчатка) // Землетрясения Северной Евразии в 2004 году. – Обнинск: ГС РАН, 2010. – С. 314–323.
- 29. Mets C., Gordon R.G., Argus D.F., Stein S. Current plate motion // Geophys. J. Int. 1990. 101. P. 425–478.
- 29. Левина В.И., Чеброва А.Ю., Ландер А.В., Иванова Е.И., Митюшкина Е.И., Титков Н.Н. Командорское-II землетрясение 5 декабря 2003 года с *MS*=6.8, *I*₀=7 (Командорские острова) // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 374–381.

30. Global CMT Web Page. – [Электронный ресурс]. – http://www.globalcmt.org/CMTsearch.html

- 31. Гусев А.А., Чубарова О.С., Чебров В.Н., Абубакиров И.Р. Колебание грунта при Олюторском землетрясении 20 (21) апреля 2006 г. и его афтершоках по данным цифровой регистрации: предварительные результаты // Олюторское землетрясение 20 (21) апреля 2006 г. Корякское нагорье. Первые результаты исследований. Петропавловск-Камчатский: ГС РАН, 2007. С. 263–276.
- 32. **Чубарова О.С., Гусев А.А., Чебров В.Н.** Свойства колебаний грунта при Олюторском землетрясении 20.04.2006 г. и его афтершоках по данным цифровой регистрации // Вулканология и сейсмология. 2010. № 2. С. 57–70.
- 33. Гусев А.А., Петухин А.Г., Гусева Е.М., Гордеев Е.И., Чебров В.Н. Средние спектры Фурье сильных движений грунта при землетрясениях Камчатки // Вулканология и сейсмология. 2006. № 5. С. 60–70.