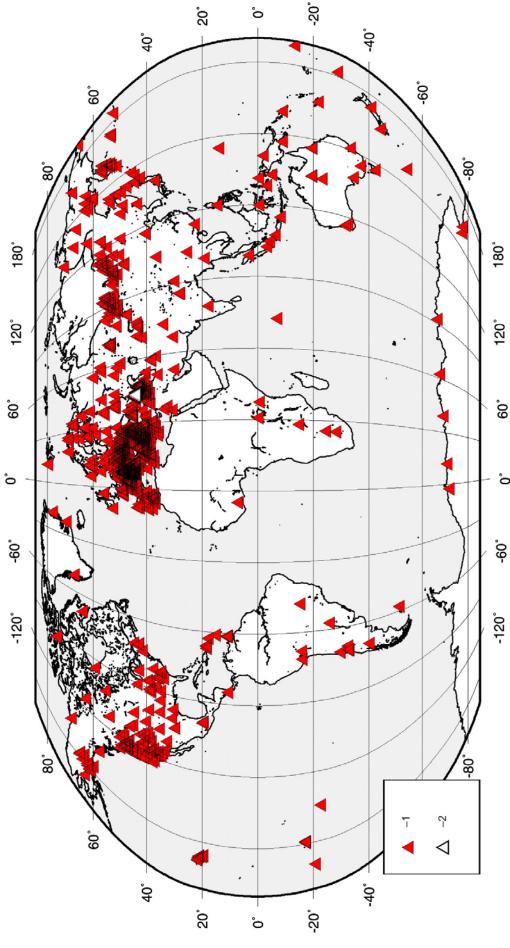
ОПЕРАТИВНАЯ ОБРАБОТКА ЗЕМЛЕТРЯСЕНИЙ МИРА ПО ТЕЛЕСЕЙСМИЧЕСКИМ НАБЛЮДЕНИЯМ ГС РАН


Л.С. Чепкунас, Н.В. Болдырева, С.Г. Пойгина

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Оперативный сейсмологический бюллетень в 2006 г., так же, как и ранее [1], составлялся на основе следующих потоков входной информации:

- ежедневных оперативных сводок со станций России и СНГ, поступавших по электронной почте и телетайпным каналам связи (в коде МСК-85);
- сводок по конкретным землетрясениям (в коде МСК-85), формируемых в Службе срочных донесений (ССД) [2] для цифровых станций, участвующих при сводной обработке по программе WSG [3] на основе волновых форм, поступивших в Обнинск в режиме, близком к реальному времени;
- оперативных сводок, создаваемых в Информационно-обрабатывающем центре (ИОЦ) ГС РАН с 13 цифровых станций («Абакан», «Красноярск», «Шира», «Дивногорск», «Оренбург», «Кызыл», «Большая речка», «Кутурчин», «Орье», «Табат», «Тиберкуль», «Шагонар», «Владивосток») по результатам выборочной обработки волновых форм записей землетрясений Восточной Сибири, Алтая, Монголии и пограничных территорий России с Монголией, Дальнего Востока, получаемых по FTP-протоколу;
- оперативных сводок из региональных сейсмологических центров России и СНГ по девяти станциям Камчатского филиала ГС РАН, семи Сахалинского филиала ГС РАН и 13 Казахстанского национального центра данных;
- оперативных сводок, создаваемых в ИОЦ ГС РАН из ежедекадных станционных бюллетеней на бумажных носителях 12 телесейсмических и региональных станций, из которых девять («Бодайбо», «Гофицкое», «Закаменск», «Кульдур», «Монды», «Печеры», «Северо-Курильск», «Хабаровск», «Чита») расположены в России и три («Львов», «Ужгород», «Делиси») в СНГ;
- ежемесячных бюллетеней Алтае-Саянского и Байкальского филиалов ГС СО РАН со сводной обработкой землетрясений Алтая, Саян, пограничных областей России с Монголией и Китаем, Байкальской зоны;
- ежемесячных бюллетеней Магаданского филиала ГС РАН со сводной обработкой землетрясений Северо-Востока России;
- ежемесячных бюллетеней Дагестанского, Северо-Осетинского филиалов ГС РАН и лаборатории сейсмического мониторинга КМВ ГС РАН со сводной обработкой землетрясений Восточного и Северного Кавказа;
- ежедневных оперативных сводок из 11 стран мира (Болгария, Германия, Голландия, Дания, Польша, Португалия, Румыния, Словакия, США, Финляндия, Чехия), поступавших по электронной почте;
- бюллетеней сводной обработки землетрясений со станционными данными сети сейсмических станций Крыма для землетрясений западной зоны Северного Кавказа, поступавших согласно научно-техническому договору с отделом сейсмологии Института геофизики НАН Украины в г. Симферополе;
- сейсмологических каталогов и бюллетеней международных сейсмологических центров США (NEIC), Австрии (IDC) и Франции (CSEM), содержащих результаты сводной обработки землетрясений и станционные данные.

Всего в Оперативной службе ГС РАН в 2006 г. использовались данные 737 сейсмических станций ГС РАН и мировой сети, изображенных на рис. 1. Как видим, подавляющее число используемых станций размещено в Северном полушарии, особенно в районах самой высокой плотности населения — в Европе. Список всех станций дан в Приложении к наст. сб. [4].

Рис. 1. Сейсмические станции мира, используемые при составлении Сейсмологического бюллетеня в 2006 г.

1-станция мира; 2-станция «Нальчик», открытая в 2006 г.

Сеть станций ГС РАН на территории России, участвующих в оперативной обработке в 2006 г., по сравнению с таковой в 2005 г. [1], пополнилась региональной станцией «Нальчик» на Северном Кавказе. На станции «Куба-Таба» поставлено дополнительное цифровое оборудование типа SDAS [5, 6].

Описанная сеть станций обеспечила в 2006 г., как это следует из графика повторяемости, построенного для 7303 землетрясений с $h \le 70 \ км$ (рис. 2), значение уровня представительной магнитуды для всей Земли M_{\min} =5.0. Уравнение линейной части графика имеет вил:

$$\lg N = (7.12 \pm 0.07) - (0.83 \pm 0.01) MS.$$
 (1)

Для его построения использованы на- $(N_{MS}*=6286)$ из [7, 8] по формуле из [9]:

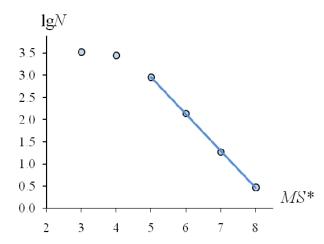


Рис. 2. График повторяемости землетрясений Земли с $h \le 70 \ \kappa M$ за 2006 г.

блюденные магнитуды землетрясений MS ($N_{\rm MS}$ =1017) и пересчетные магнитуды MS^*

$$MS*=1.59 \cdot MPSP - 3.67 \text{ c } h \le 70 \text{ км}.$$
 (2)

Выходные потоки информации включали ежедекадные оперативные каталоги и сейсмологические бюллетени ГС РАН [7, 8], но не 36 выпусков за год, как в [1], а только 20, включая 2-ю декаду июля 2006 г., перейдя в дальнейшем исключительно к электронным формам по адресам:

ftp://ftp.gsras.ru/pub/Teleseismic bulletin/2006/ – для бюллетеня, ftp://ftp.gsras.ru/pub/Teleseismic Catalog/2006/ – для каталога.

Методика расчета основных параметров землетрясений, по сравнению с таковой в [1], не изменилась. Координаты гипоцентра (ϕ, λ, h) и время t_0 возникновения землетрясения определялись по программе ЭПИ-74 [10] с использованием телесейсмических [11-13] и региональных [14, 15] годографов на основании данных о временах прихода продольных Р (РКІКР)-волн на сейсмические станции. Максимум поверхностных волн LRM выделялся в соответствии с годографами [16, 17], определение магнитуд МS и MPSP производилось по максимальной скорости смещения $(A/T)_{\max}$ в поверхностных и объемных волнах и соответствующим калибровочным кривым [18–22].

Оперативный сейсмологический каталог за 2006 г. [8] включает параметры 8714 землетрясений с MPSP=3.2-7.2 и одного промышленного взрыва в Свердловской области 2 февраля в 11^h30^m с MPSP=3.8, выявленного позже [23].

Распределение землетрясений Земли с M (MS, MPLP, MPSP)≥6.0 в зависимости от магнитуды, но без дифференциации их по глубинам очагов, приведено в табл. 1, в сопоставлении с аналогичными данными за предыдущие 14 лет [1]. Как видим, в 2006 г. число землетрясений в интервале M=6.0-6.9 составило N=154, что сравнимо со средним (N=148 \pm 31) за 15 лет; в диапазоне M=7.0-7.9 оно равно N=15 и также близко к среднему значению ($N=14\pm4$). В 2006 г. произошло два землетрясения с M=8.0 — на островах Тонга 3 мая в $15^{\rm h}26^{\rm m}$ с MPLP=8.0 и Симуширское-І 15 ноября в $11^{\rm h}14^{\rm m}$ с MS=8.0 в районе Курильских островов.

Распределение числа землетрясений Земли разных магнитуд по интервалам глубин и суммарная сейсмическая энергия дано в табл. 2. Для ее построения использованы наблюденные магнитуды MS землетрясений и пересчетные MS^* для неглубокофокусных землетрясений по формуле (2), а для глубокофокусных – по формулам (3), (4) из [8]:

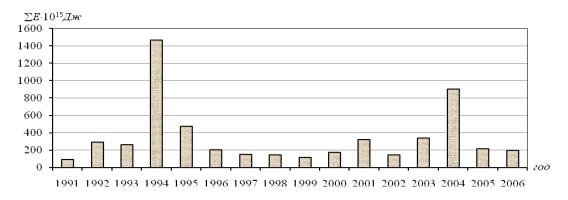
$$MS *= 1.77 MPSP - 5.2, h=71-390 \kappa M,$$
 (3)

$$MS *= 1.85 MPSP - 4.9, h > 390 \kappa M.$$
 (4)

Сейсмическая энергия, в отличие от предыдущих лет, рассчитывалась только из MS/MS^* по формуле К. Касахара [24]:

$$\lg E, \ p \approx 11.8 + 1.5 \ MS.$$
 (5)

Таблица 1. Распределение числа землетрясений Земли в различных интервалах магнитуд с M≥6.0 за 1991–2006 гг.


	Год	ВИ	землетря	Всего		
		6.0 - 6.9	7.0 - 7.9	8.0 - 8.9		
,	1991	84	9		93	
	1992	117	13		130	
	1993	97	7		104	
	1994	136	14	1	151	
	1995	242	28		270	
	1996	217	15		232	
	1997	151	5		156	_
	1998	113	12		125	(
	1999	159	21		180	_3
	2000	169	17		186	

Год	Число в и	Всего					
	6.0 - 6.9	7.0-7.9	8.0-8.9				
2001	126	16	1	143			
2002	139	11		150			
2003	138	14	2	154			
2004	153	14	3	170			
2005	190	13	1	204			
Сумма	2231	209	8	2448			
Среднее за 15 лет	148±31	14±4		163±34			
2006	154	15	2	171			

Таблица 2. Распределение N(M) землетрясений Земли и суммарной их энергии по разным интервалам глубин за 2006 г.

h,			N_{Σ}	ΣE ,						
км	≤2.5	2.6-3.5	3.6-4.5	4.6-5.5	5.6-6.5	6.6-7.5	7.6–8.5	1	10 ¹⁵ Дж	
≤70	633	2739	2855	916	138	19	3	7303	149.75	
71–390	508	437	149	28	28	2	1	1153	39.18	
>390	32	74	110	31	8	3		258	7.71	
N_{Σ}	1173	3250	3114	975	174	24	4	8714	196.64	

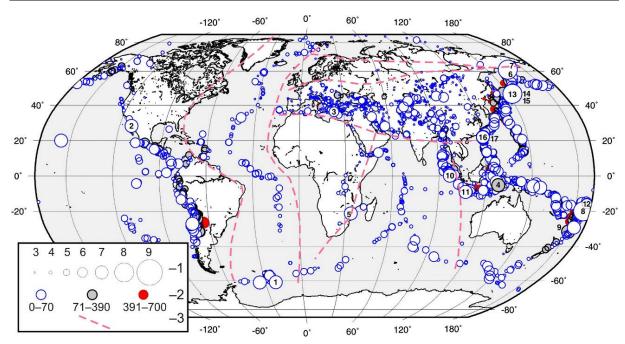

По данным Сейсмологического бюллетеня ГС РАН [7], общее количество выделившейся в 2006 г. энергии на земном шаре равно ΣE =196.64·10¹⁵ Дж, что меньше таковой в 2004 г. (ΣE =851.39·10¹⁵ Дж [25]) и 2005 г. (ΣE =221.48·10¹⁵ Дж [1]). Это связано прежде всего, с различным числом N землетрясений с M≥7.6 в эти годы. На рис. 3 показано распределение сейсмической энергии землетрясений за 1991–2006 гг. по данным [1, 6, 25, 26], рассчитанной единообразно из MS/MS^* по формуле (5) из [24].

Рис. 3. Распределение сейсмической энергии землетрясений Земли в 1991–2006 гг.

На рис. 4 представлено географическое распределение землетрясений Земли. На карте показаны границы основных сейсмических поясов по [27] — Тихоокеанского (I), Трансазиатского (II), Атлантического (III), Индийского (IV), Африканского грабена (V).

Далее дано описание распределения землетрясений в пределах границ сейсмических поясов в 2006 г., приведен список наиболее сильных землетрясений и показана таблица их механизмов, а затем дано описание сильнейших землетрясений. Распределение суммарной сейсмической энергии, выделившейся в 2006 г. при землетрясениях с $M(MS, MPLP, MPSP) \ge 6.0$ в различных сейсмических поясах, приведено в табл. 3.

Рис. 4. Карта эпицентров землетрясений Земли за 2006 г. по данным [7]

1 – магнитуда MS/MS^* ; 2 – глубина h гипоцентра, κm , 3 – граница сейсмического пояса.

Таблица 3. Распределение числа землетрясений с M≥6.0 и суммарной сейсмической энергии ΣE по сейсмическим поясам в 2006 г.

No	Сейсмический пояс	M	$\sum_{15} E$,	
		6.0-6.9	≥7.0	10 ¹⁵ Дж
I	Тихоокенский	121	13	177.9
II	Трансазиатский	13	1	0.8
III	Атлантический	3	1	6.3
IV	Индийский	16	1	1.7

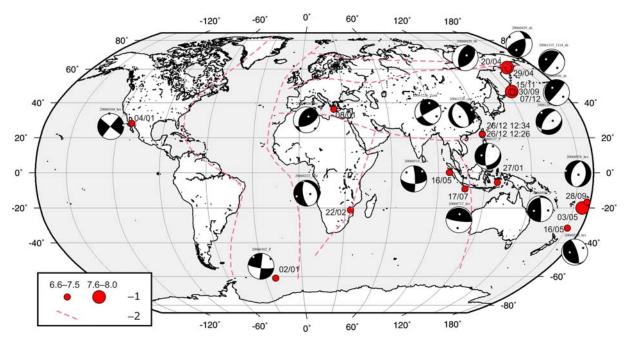
No	Сейсмический пояс	M	ΣЕ, 10 ¹⁵ Дж		
		6.0-6.9	≥7.0	10 ¹⁵ Дж	
V	Восточно-Африканские грабены	1	1	5.6	
	Сумма	154	17	192.3	

Как и в 2005 г. [1], в табл. З включен сейсмический пояс V (Восточно-Африканские грабены [27]), связанный с внутренними разломами континентальных структур, т.к. в его пределах в 2006 г. произошло сильное (MS=7.3) землетрясение в Мозамбике [7, 8]. Суммарное значение сейсмической энергии, выделившейся в этом поясе, превосходит таковую для Трансазиатского и Индийского поясов и соизмеримо с энергией для Атлантического пояса. Из 17 сильнейших землетрясений Земли с M (MS, MPLP, MPSP) \geq 7.0 13 землетрясений локализованы в Тихоокеанском сейсмическом поясе и по одному в остальных поясах (табл. 4).

Таблица 4. Список сильных землетрясений мира с $M \ge 7.0$ в 2006 г.

№	Дата, <i>д</i> м	t ₀ , ч мин с	Эпил °Ф	центр λ°	<i>h</i> , км	M_0 , H : \mathcal{M} (OBN)		J		Сейсми- ческий пояс	Географический регион по [28]
1	2	3	4	5	6	7	8	9	10	11	12
1*	02.01	06 10 48.6	-61.016	-21.557	10f		7.3/28		5.9/20	III	Юго-запад Атлантического океана
2	04.01	08 32 31.6	28.281	-112.125	10f		7.1/30		6.3/67	I	Калифорнийский залив
3	08.01	11 34 53.9	36.329	23.283	66		6.4/58	7.2/16	6.8/80	II	Южная Греция
4*	27.01	16 58 51.5	-5.382	128.234	389			7.0/8	7.0/52	I	Море Банда
5	22.02	22 19 06.8	-21.167	33.717	11	$3.8 \cdot 10^{19}$	7.3/57	7.4/8	6.6/60	V	Мозамбик
6*	20.04	23 24 58.7	61.028	167.088	10	7.9·10 ¹⁹	7.7/82	7.0/9	6.8/136	I	Восточная Сибирь, Россия

№	Дата, <i>д</i> м	t ₀ , ч мин	С	Эпи: ф°	центр λ°	<i>h</i> , км	M_0 , H : \mathcal{M} (OBN)		51.1		Сейсми- ческий пояс	Географический регион по [28]
1	2	3		4	5	6	7	8	9	10	11	12
7*	29.04	16 58 0	4.5	60.56	167.52	10f	9.0·10 ¹⁸	6.6/47	7.0/8	6.4/89	I	Восточная Сибирь, Россия
8*	03.05	15 26 3	7.0	-19.978	-174.223	33f		7.7/78	8.0/8	7.2/59	I	Острова Тонга
9	16.05	10 39 2	1.0	-31.557	-179.156	134		7.0/19	7.4/5	6.7/39	I	Район островов Кермадек
10	16.05	15 28 2	7.4	0.1	97.0	33f		6.8/35	7.3/7	6.8/44	IV	Северная Суматра, Индонезия
11	17.07	08 19 2	7.3	-9.13	107.45	33f	$7.8 \cdot 10^{19}$	7.0/64	6.8/11	6.1/39	I	Южнее Явы, Индонезия
12	28.09	06 22 0	9.0	-16.565	-172.057	34		6.5/83	7.1/4	6.7/80	I	Район островов Самоа
13*	30.09	17 50 2	4.3	46.31	153.12	31	$2.0 \cdot 10^{19}$	6.5/70	7.1/10	6.3/142	I	Курильские острова
14*	15.11	11 14 1	4.5	46.57	153.29	26	$5.2 \cdot 10^{20}$	8.0/61	7.3/8	6.7/113	I	Курильские острова
15*	07.12	19 10 2	4.1	46.10	154.31	46	6.3·10 ¹⁸	6.5/49	7.0/6	6.5/124	I	Восточнее Курильских островов
16	26.12	12 26 2	3.3	21.88	120.58	33f	4.4·10 ¹⁹	7.2/76	7.1/13	6.7/101	I	Район Тайваня
17	26.12	12 34 1	6.3	22.16	120.58	33f		7.1/31	7.1/5	6.6/68	I	Тайвань


Примечание. В графе 1 номера землетрясений соответствуют таковым в [8], знак * указывает наличие в [8] параметров механизма очага по первым вступлениям P-волн; в графе 6 буквой «f» индексирована фиксированная глубина.

В табл. 5 и на рис. 5 представлены решения механизмов очагов: для восьми землетрясений (\mathbb{N}_2 1, 4, 6–8, 13–15) они взяты из [7, 8] и получены по P-волнам (код MOS); для шести (2, 3, 5, 9–11) – из [29], получены по методу тензора момента центроида (ТМЦ) по данным Гарвардского центра США (код HRVD); для трех (12, 16, 17) – из [29] по данным Колумбийского университета США (код GCMT), куда было переведено агентство HRVD.

Таблица 5. Механизмы очагов сильных землетрясений мира в 2006 г.

No	Дата,	t_0 ,	h,	N	Л агнит	гуда	Оси главных напряжений							Нодальные плоскости					
	д м	ч мин с	км	Mw	MS	MPSP		T		N		P		NP1			NP	2	ство
				[29]			PL	AZM	PL	AZM	PL	AZM	STK	DΡ	SLIP	STK	DΡ	SLIP	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	02.01	06 10 48.6	10f	7.4	7.3	5.9	9	321	78	180	7	52	97	78	1	6	89	168	MOS
2	04.01	08 32 31.6	10f	6.6	7.1	6.3	2	84	87	256	0	354	129	88	178	219	88	2	HRVD
3	08.01	11 34 53.9	66	6.7	6.4	6.8	65	32	24	228	6	135	201	44	55	66	55	119	HRVD
4	27.01	16 58 51.5	389	7.6	7.2*	7.0	23	294	28	191	53	57	65	34	-32	182	73	-119	MOS
5	22.02	22 19 06.8	11	7.0	7.3	6.6	19	253	11	347	67	104	325	27	-114	172	65	-78	HRVD
6	20.04	23 24 58.7	10f	7.6	7.7	6.8	72	31	18	211	0	121	194	48	66	48	48	114	MOS
7	29.04	16 58 04.5	10f	6.6	6.6	6.4	49	205	39	45	10	307	360	49	33	247	66	134	MOS
8	03.05	15 26 37.0	33f	8.0	7.7	7.2	49	252	15	0	37	102	247	17	158	358	84	75	MOS
9	16.05	10 39 21.0	134	7.4	7.0	6.7	60	266	10	159	28	64	129	19	58	342	74	100	HRVD
10	16.05	15 28 27.4	33f	6.8	6.8	6.8	15	49	59	164	27	311	92	60	-171	358	82	-31	HRVD
11	17.07	08 19 27.3	33f	7.7	7.0	6.1	55	6	2	98	35	190	290	10	102	98	80	88	HRVD
12	28.09	06 22 09.0	34	6.9	6.5	6.7	5	283	7	14	82	155	199	51	-81	6	40	-100	GCMT
13	30.09	17 50 24.3	31	6.6	6.5	6.3	50	320	9	219	38	121	40	84	99	163	11	34	MOS
14	15.11	11 14 14.5	26	8.3	8.0	6.7	50	297	9	39	38	136	38	84	81	274	11	146	MOS
15	07.12	19 10 24.1	46	6.4	6.5	6.5	12	320	20	225	66	78	213	60	-114	74	37	-55	MOS
16	26.12	12 26 23.3	33f	7.0	7.2	6.7	15	65	7	333	73	219	165	30	-76	329	61	-98	GCMT
17	26.12	12 34 16.3	33f	6.9	7.1	6.6	38	8	48	241	28	114	151	48	0	61	90	138	GCMT

Примечание. Параметры землетрясений в графах 1–4, 6, 7 соответствуют таковым в каталоге [8]; в графе 5 дана Mw, полученная при определении механизма очага по методу ТМЦ [29]; в графе 6 знак * для землетрясения (4) обозначает расчетную магнитуду MS*.

Рис. 5. Стереограммы механизмов очагов сильных землетрясений за 2006 г. в проекции нижней полусферы

1 – магнитуда MS/MS*; 2 – граница сейсмического пояса

Ниже приводятся описания решений механизмов очагов 17 землетрясений из табл. 5 по сейсмическим поясам I-V. Для сравнения энергетических характеристик землетрясений при их описании приводится магнитуда MS (табл. 4 и 5).

В пределах Тихоокеанского пояса (**I**) сосредоточено 76 % (13 из 17) сильных (M≥7.0) землетрясений – №№ 2 , 4, 6–9, 11–17 в табл. 4, 5. Рассмотрим их в отдельности.

Землетрясение (2) с MS=7.1 произошло 4 января в $08^{\rm h}32^{\rm m}$ в районе Калифорнийского залива под действием напряжений сжатия, ориентированных в северном направлении, и напряжений растяжения, ориентированных на восток. Обе нодальные плоскости близвертикальны (DP=88°) и характеризуются сдвиговым типом движения: левосторонним — по плоскости NP2 юго-западного простирания, правосторонним — по плоскости NP1 юго-восточного простирания.

Землетрясение (4) с $MS^*=7.2$ зарегистрировано 27 января в $16^{\rm h}58^{\rm m}$ в районе моря Банда, а (12) с MS=6.5-28 сентября в $06^{\rm h}22^{\rm m}-$ относится к островам. В обоих случаях движение в очаге возникло под действием напряжений растяжения, ориентированных на запад—северо-запад. В случае (4) более пологая ($DP=34^{\circ}$) плоскость NP1 имеет северо-восточное простирание ($STK=65^{\circ}$), тип движения по ней – левосторонний сдвиг с компонентой сброса; более крутая ($DP=73^{\circ}$) плоскость NP2 имеет меридиональное простирание ($STK=182^{\circ}$), тип движения по ней – сброс, с компонентой правостороннего сдвига. В случае (12) обе плоскости имеют близмеридиональное простирание, по обеим плоскостям тип движения – сброс с компонентами левостороннего сдвига по NP2 и правостороннего – по NP1.

Землетрясения (6, 7) возникли в Корякском автономном округе: (6) — Олюторское землетрясение 20 апреля в 23^h24^m с *MS*=7.7, и (7) — сильнейший афтершок с *MS*=6.6 29 апреля в 16^h58^m [30]. Первая информация об Олюторском землетрясении и последовавшей за ним мощной серии афтершоков была опубликована в Интернете на сайте Камчатского филиала ГС РАН (*http://data.emsd.iks.ru/regquake/index.htm*) по данным радиотелеметрических станций [31] в режиме, близком к реальному времени. Было отмечено увеличение числа поверхностных землетрясений в связи с извержением трех вулканов: Ключевского, Шивелуча и Безымянного. Предполагается [32], что всплеск сейсмической активности в 2005 г. был предвестником Олюторского землетрясения. Для землетрясений (6, 7) движение в очаге определялось действием напряжений сжатия, ориентированных на северо-запад. В очаге главного толчка (6) простирание плоскостей северо-восточное (*NP1*) и юг–юго-западное (*NP2*) в направлении Курило-Камчатской дуги, тип движения по обеим плоскостям – взброс с компонентой

правостороннего сдвига для плоскости NP2 и левостороннего — для NP1. Для афтершока (7) одна нодальная плоскость NP2 простирается в направлении на север (STK=0°), тип движения по ней — левосторонний сдвиг с компонентами взброса; другая — NP1 — имеет простирание на запад—юго-запад (STK=247°), тип движения по ней — взброс с компонентой правостороннего сдвига.

Результаты анализа афтершоковой последовательности Олюторского землетрясения (6) описаны в [33, 34], где показана оконтуренная область афтершоков, приведены ее размеры, определены механизмы очагов главного толчка и афтершоков. Полная сейсмическая энергия, выделившаяся в очаговой области, равна $1.5 \cdot 10^{15} \, Дж$. Две трети этой величины приходится на главное землетрясение и одна треть – на афтершоковый процесс. В [35] исследована пространственно-временная структура очага Олюторского землетрясения на основе записей Р-волн на широкополосных станциях мировой сети и японской сети F-net. Получены параметры очага, центр его тяжести расположен к юго-западу от эпицентра на расстоянии 13-25 км. Длина очага -112.8 ± 8.4 км, скорость распространения разрыва -2.7-3.0 км/с. В [36] определены параметры модели высокочастотного излучателя в виде прямолинейного сегмента с однородной светимостью, в которой разрыв распространяется двусторонним образом с постоянной скоростью. Результаты приемлемо согласуются с размером и простиранием афтершоковой зоны и положением в ней инструментального эпицентра. В [37] выявлены некоторые особенности записи колебаний грунта на разных станциях при Олюторском землетрясении по спектрам Фурье. В [38, 39] приведены выявленные в первые дни после землетрясения первичные и вторичные сейсмодислокации в результате обследования ряда объектов на местности и в населенных пунктах Тиличики, Корф и Хаилино, входящих в эпицентральную область. Олюторское землетрясение подтвердило оценки по включению в карту общего сейсмического районирования ОСР-97А поселков КАО Тиличики и Корф составной частью к пунктам с возможными сотрясениями на средних грунтах до 8 баллов по шкале MSK-64 и поставило вопрос о необходимости дополнительных исследований сейсмической опасности [40, 41]. Проведены макросейсмические обследования последствий сильных сейсмических событий на грунтах, способных разжижаться [42-44], подтверждается увеличение интенсивности на этих площадках и уменьшение ее на отложениях, где отсутствуют подобные явления. В [45] обсуждаются результаты вейвлет-обработки излучений электромагнитного поля в интервале $0-20 \ \kappa \Gamma \mu$, зарегистрированных в верхней атмосфере вблизи Олюторского землетрясения. По наблюдениям Камчатской GPS-сети KAMNET [46], которая является составной частью опорной сети GPS-станций ГС РАН (NEDA) на территории Северной Евразии, получены предварительные данные относительного перемещения Беринговоморской и Северо-Американской плит в районе Олюторского землетрясения. При анализе временного ряда GPS-наблюдений выявлена аномалия, начавшаяся в конце 2005 г. Олюторское землетрясение предварялось смещениями пункта TIL в направлении юг-север на несколько мм от среднего глобального тренда. Этому землетрясению посвящена отдельная статья [47] в наст. сб.

Землетрясения (8,9) зарегистрированы 3 мая в $15^{\rm h}26^{\rm m}$ с MS=7.7 и 16 мая в $10^{\rm h}39^{\rm m}$ с MS=7.0 в районе островов Тонга и Кермадек. Движение в очагах (8,9) возникло под действием близких по величине напряжений сжатия, ориентированных на восток—юго-восток в (8) и северо-восток — в (9), и напряжений растяжения, ориентированных в обоих случаях на западюго-запад. В случае (8) по плоскости NP1 пологого $(DP=17^{\circ})$ залегания и юго-западного простирания реализовался надвиг с компонентами правостороннего сдвига, в случае (9) по такой же пологой $(DP=19^{\circ})$ плоскости юго-восточного простирания — надвиг с компонентами левостороннего сдвига. Плоскость NP2 в обоих случаях — крутопадающая $(DP=84, 74^{\circ})$ с близмеридиональным $(STK=358, 342^{\circ})$ простиранием. В движениях по ним превалирует взброс с компонентой левостороннего (8) и правостороннего (9) сдвига.

Землетрясение (11) с MS=7.0 отмечено 17 июля в $08^{\rm h}19^{\rm m}$ в Индонезии, южнее о. Ява. Движение в его очаге возникло под действием сжимающих и растягивающих напряжений, ориентированных в направлении север-юг. Обе нодальные плоскости имеют близширотное простирание. Движение по пологой (DP=10°) плоскости NP1 – надвиг, по крутой (DP=80°) плоскости NP2 – взброс. При этом землетрясении образовался надвиг в Яванском желобе, в результате возникло разрушительное цунами (высота волн – 5–8 M), обрушившееся на южный берег острова [48]. Скорость вспарывания разлома была необычно низкой – 1.0–1.5 KM/c. Зем-

летрясение возникло около верхнего края надвига зоны субдукции. Его очаг был определен по записям шести мареографов, размещенных вокруг Индийского океана [49]. По инверсии волновых форм цунами определено, что длина очага цунами $\sim\!200~\kappa M$. По модели мгновенного вспарывания разлома наибольшее смещение (2.5~M) произошло в $\sim\!150~\kappa M$ к востоку от эпицентра. Большая часть подвижек приходится на мелководную часть разлома. Согласно [50], подвижка в очаге землетрясения типа взброс, что согласуется с данными табл. 5.

Землетрясения (13, 14, 15), произошедшие 30 сентября в $17^h 50^m$ с MS=6.5, 15 ноября в $11^{h}14^{m}$ с MS=8.0 (Симуширское-I) [29, 51] и 7 декабря в $19^{h}10^{m}$ с MS=6.5, локализованы в районе Курильских островов. В очагах землетрясений первых двух из них движения вызваны действием преобладающих напряжений сжатия, ориентированных на юго-восток [51]. Одна из нодальных плоскостей NPI в (13 и 14) – крутопадающая, тип движения по ней – взброс, простирание северо-восточное, совпадающее с направлением Курильской гряды. Другая NP2 – пологая, но в случае (13) ее простирание юг–юго-восточное (STK=163°), тип движения – левосторонний сдвиг с компонентами надвига, а в случае (14) – близширотное простирание, тип движения – правосторонний сдвиг с компонентами надвига. Изучению Симуширского-І землетрясения (14) и последовавшему за ним 13 января $2007 \, \Gamma$. в $04^{\rm h}23^{\rm m}$ Симуширскому-II землетрясению с MS=8.2(также к востоку от Курильских островов) посвящены работы [52-55]. Отмечается, что вдоль Тихоокеанского побережья приливными станциями были зарегистрированы цунами, которые в Японии не вызвали разрушений [53]. Смоделированы возможные сценарии развития цунами [54]. Обсуждаются проблемы долгосрочного прогноза в связи с произошедшими Симуширскими землетрясениями [52, 55, 56]. Тип движения в очаге события (15) – сброс, обе плоскости имеют одинаковое простирание в направлении северо-восток-юго-запад. Движение в очаге возникло под действием напряжений растяжения, ориентированных на северо-запад.

Землетрясения (16, 17), зарегистрированные 26 декабря в 12^h26^m и в 12^h34^m с MS=7.2 и 7.1, произошли у южного побережья Тайваня на границе Евразийской и Филиппиноморской плит. Тип движения в очаге (16) – сброс по обеим нодальным плоскостям, в (17) – сдвиг, левосторонний по NP1 и правосторонний – по NP2. Движение в очаге (16) обусловлено действием напряжений растяжения, ориентированных на восток—северо-восток ($AZM=65^\circ$). Плоскость крутого залегания NP2 имеет простирание на северо-запад, тип движения по ней – сброс с компонентой правостороннего сдвига. Более пологая плоскость NP1 простирается на юг-юговосток ($STK=165^\circ$), тип движения – также сброс, но с компонентой левостороннего сдвига. Процесс разрывообразования при этом землетрясении изучался в [57] при использовании широкополосных записей P-волн китайской цифровой сейсмологической сети (CDSN) и сети IRIS, а также модели конечных разломов и точечного источника. В [57] определены параметры разлома: простирание плоскости — 341.5° , падение — 77.9° в восточном направлении. Произошел сброс с небольшой сдвиговой компонентой. Полагают, что землетрясение было вызвано растяжением, возникшим вследствие процесса субдукции Евразийской плиты под Филиппиноморскую. Данные механизма очага (16), полученные в [57], согласуются с данными GCMT из табл. 5.

В (17) движение вызвано действием близких по величине напряжений сжатия и растяжения, ориентированных на восток—юго-восток (AZM=114°) и почти на север (AZM=8°) соответственно. Вертикальная плоскость залегания NP2 имеет простирание на северо-восток (STK=61°), более пологая плоскость NP1 — на юго-восток (STK=151°).

В Трансазиатском поясе (**II**) 8 января в $11^{\rm h}34^{\rm m}$ возникло землетрясение (3) с MS=6.4 в районе Южной Греции под действием сжимающих напряжений, ориентированных на юговосток. Плоскость NP1 простирается на юг–юго-запад (STK=201°), плоскость NP2 — на восток–северо-восток (STK=66°), тип движения по ним — взброс с компонентой правостороннего сдвига по NP2 и левостороннего — по NP1.

В пределах Атлантического пояса (III), на юго-западе Атлантического океана, 2 января в $06^{\rm h}10^{\rm m}$ зафиксировано землетрясение (1) с MS=7.3. Движение в его очаге возникло под действием близких по величине напряжений сжатия, ориентированных на северо-восток, и растяжения, ориентированных на северо-запад. Обе плоскости залегают круто. Одна плоскость – NP1 – близмеридионального простирания и тип движения по ней — правосторонний сдвиг с вертикальной компонентой. Вторая плоскость – NP2 – имеет близширотное простирание и тип движения по ней — левосторонний сдвиг.

К Индийскому сейсмическому поясу (IV) относится землетрясение (10) с MS=7.0, которое имело место 16 мая в $15^{\rm h}28^{\rm m}$ к западу от о. Суматра. Движение в его очаге произошло под действием как напряжений растяжения, ориентированных на северо-восток, так и напряжений сжатия, ориентированных на северо-запад. Обе нодальные плоскости залегают круто. По плоскости меридионального простирания NP2 тип движения — левосторонний сдвиг с компонентой сброса. По плоскости широтного простирания NP1 тип движения — правосторонний сдвиг с компонентой сброса.

В районе Восточно-Африканских грабенов (V) 22 февраля в 22^h19^m зарегистрировано землетрясение (5) в Мозамбике с *MS*=7.3. Движение в его очаге произошло под действием превалирования напряжений растяжения, ориентированных на запад-юго-запад. Одна из плоскостей *NP2* простирается близмеридионально, имеет крутое падение и тип движения по ней – сброс с компонентой левостороннего сдвига. Плоскость *NP1* простирается в северо-западном направлении и тип движения по ней – сброс с компонентой правостороннего сдвига (табл. 5). Это землетрясение – сильнейшее в Южной Африке за минувшие 100 лет [58]. Согласно [29], четыре человека погибли, 36 человек ранены, по крайней мере 294 здания разрушены в области Эспенгабере–Бейре–Чимойе. Отключения электроэнергии отмечены в Мапуту. Землетрясение ощущалось всюду по Мозамбику и восточному Зимбабве, Ботсване и Лусаке, в Замбии, во многих населенных пунктах Южной Африки: в Бейре, Иньямбане и Мапуту с интенсивностью 5 баллов; в Матоле, Хараре, Мутаре, Зимбабве, Луи Трихардте и Палаборва – 4 балла; в Дурбане и Мидделбурге – 3 балла; в Йоханнесбурге и Претории – 2 балла [29]. Землетрясение сопровождалось афтершоками.

В заключение отметим, что в 2006 г. произошли такие уникальные землетрясения, как Олюторское (MS=7.7), в Мозамбике (MS=7.3) и Симуширское-I (MS=8.0). Суммарная сейсмическая энергия, выделившаяся в 2006 г. на земном шаре, соответствует средним многолетним значениям за период наблюдений 1991–2006 гг. (см. рис. 3). Более 90% всей энергии приходится на Тихоокеанский сейсмический пояс, где имели место 13 сильнейших землетрясений года, и около 9% – на другие сейсмические пояса.

Литература

- 1. **Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г.** Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2005 г. Обнинск: ГС РАН, 2010. С. 274—282.
- 2. **Старовойт О.Е., Чепкунас Л.С., Коломиец М.В.** Служба срочных донесений ГС РАН. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. **Красилов С.А., Коломиец М.В., Акимов А.П.** Организация процесса обработки цифровых сейсмических данных с использованием программного комплекса WSG // Современные методы обработки и интерпретации сейсмологических данных. Материалы Международной сейсмологической школы, посвященной 100-летию открытия сейсмических станций «Пулково» и «Екатеринбург». Обнинск: ГС РАН, 2006. С. 77—83.
- 4. **Болдырева Н.В.** Список сейсмических станций России и мира (*N*=737), использованных при создании Сейсмологического бюллетеня за 2006 г. (См. Приложение к наст. сб. на CD).
- 5. **Габсатарова И.П., Селиванова Е.А., Девяткина Л.В., Головкова Л.В.** Северный Кавказ. (См. раздел I (Обзор сейсмичности) в наст. сб.)
- 6. Результаты проведения комплексных сейсмологических и геофизических наблюдений и обработки данных на базе стационарных и мобильных сейсмических сетей в ГС РАН за 2006 год (отчет за 01.01–31.12.2006 г.). — Обнинск: Фонды ГС РАН, 2006. — 160 с.
- 7. Сейсмологический бюллетень (ежедекадный) за 2006 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2006–2007. [Электронный ресурс]. *–ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2006*.
- 8. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Малянова Л.С., Рыжикова М.И., Шаторная Н.В., Щербакова А.И. Каталог землетрясений Земли (N=8714) и взрыва (N=1) за 2006 г. (См. Приложение к наст. сб. на CD).

- 9. **Кондорская Н.В., Горбунова И.В., Киреев И.А., Вандышева Н.В.** О составлении унифицированного каталога сильных землетрясений Северной Евразии по инструментальным данным (1901–1990 гг.) // Сейсмичность и сейсмическое районирование Северной Евразии. Вып. 1. М.: АН СССР, 1993. С. 70–79.
- 10. **Епифанский А.Г.** Определение параметров гипоцентров и магнитуд землетрясений в телесейсмической зоне (ЭПИ-74) // Алгоритмы и практика определения параметров гипоцентров землетрясений на ЭВМ. М.: Наука, 1983. С. 92–97.
- 11. **Рихтер Ч.** Элементарная сейсмология. М.: ИЛ, 1963. 670 с.
- 12. **Jeffreys H., Bullen K.E.** Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. 65 p.
- 13. **Bolt B.A.** Estimation of *PKP* travel times // Bull. Seism. Soc. Am. 1968. **58**. N 4. P. 1305–1324.
- 14. **Голенецкий С.И., Круглякова М.И., Перевалова Т.И.** Годографы сейсмических волн землетрясений Прибайкалья // Сейсмичность и глубинное строение Прибайкалья. Новосибирск: Наука, СО, 1978. С. 30–38.
- 15. **Wadati K.** Travel time *P* and *S*-waves // Geophys. Mag. 1933. N 11.
- 16. **Архангельская В.М.** Использование записей поверхностных волн при интерпретации сейсмограмм // Бюллетень Совета по сейсмологии. М.: АН СССР, 1957. № 6. С. 81–88.
- 17. **Горбунова И.В., Захарова А.И., Чепкунас Л.С.** Максимальная фаза поверхностной волны Релея по наблюдениям различной аппаратурой в ЦСО «Обнинск» // Магнитуда и энергетическая классификация землетрясений. Т. II. М.: ИФЗ АН СССР, 1974. С. 19–25.
- 18. **Gutenberg B., Richter C.** Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1942. **32**. N 3. P. 163–191.
- 19. **Gutenberg B., Richter C.** Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1956. **46**. N 2. P. 105–145.
- 20. Ванек И., Затопек А., Карник В., Кондорская И.В., Ризниченко Ю.В., Саваренский Е.Ф., Соловьёв С.Л., Шебалин Н.В. Стандартизация шкал магнитуд // Изв. АН СССР. Сер. геофизич. 1962. № 2. С. 153–158.
- 21. **Горбунова И.В., Шаторная Н.В.** О калибровочной кривой для определения магнитуды землетрясений по волнам *РКІКР* // Физика Земли. -1976. № 7. С. 77-81.
- 22. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 23. Асминг В.Э., Виноградов А.Н., Габсатарова И.П. и др. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2006 году. Обнинск: ГС РАН, 2009. С. 83–104.
- 24. Касахара К. Механика землетрясений. М.: Мир, 1985. С. 25.
- 25. **Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г.** Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 274—282.
- 26. **Оперативный сейсмологический каталог (ежедекадный) за 1991–2005** гг. / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ИФЗ РАН, 1991–2004; ГС РАН, 2005–2006.
- 27. Гутенберг Б. и Рихтер Ч. Сейсмичность Земли. М.: ИЛ, 1948. 160 с.
- 28. **Young J.B., Presgrave B.W., Aichele H., Wiens D.A. and Flinn E.A.** The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earth and Planetary Interiors. 1996. 96. P. 223–297.
- 29. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2007–2008.
- 30. **Левина В.И., Ландер А.В.** Сильнейшие землетрясения Корякского нагорья // Материалы Международной конференции, посвященной 10-летию выпуска сборника научных трудов «Землетрясения Северной Евразии». Обнинск: ГС РАН, 2008. С. 142–146.
- 31. Сенюков С.Л., Дрознина С.Я., Козлова Н.И., Пасечко Н.П., Нуждина И.Н., Кожевникова Т.Ю. Оперативная обработка сильного Олюторского землетрясения 20 апреля 2006 г. и его афтершоков // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научно-техническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007. С. 50.

- 32. Неспокойно на Камчатке (по материалам Института вулканологии и сейсмологии ДВО РАН) // Земля и Вселенная. -2006. -№ 5. С. 43. // \rightarrow РЖ «Физика Земли». -2007. -№ 4 (реф. 155).
- 33. **Ландер А.В., Левина В.И., Иванова Е.И.** Олюторское землетрясение 20 (21) апреля 2006 г. *Мw*=7.6: предварительные результаты исследования серии афтершоков // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научно-техническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007. С. 45.
- 34. **Левина В.И.**, **Ландер А.В.**, **Шевченко Н.А.** Олюторское землетрясение 20 (21) апреля 2006 г. с *Мw*=7.6: методика обработки, основные результаты // Современные методы обработки и интерпретации сейсмологических данных. Материалы Второй Международной сейсмологической школы. Обнинск: ГС РАН, 2007. С. 131–139.
- 35. **Павлов В.М., Абубакиров И.Р.** Оценки параметров очага Олюторского землетрясения 20 апреля 2006 г., *Мw*=7.6, по длиннопериодным сейсмограммам *P*-волн мировой сети станций // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научнотехническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007. С. 48.
- 36. **Гусев А.А., Гусева Е.М.** Предварительная оценка параметров высокочастотного очага Олюторского землетрясения 20 (21) апреля 2006 г. (*Мw*=7.6, Корякия) // Олюторское землетрясение 20 (21) апреля 2006 г., Корякское нагорье. Первые результаты исследований. Петропавловск-Камчатский: ГС РАН, 2007. С. 231–240.
- 37. **Гусев А.А., Чубарова О.С., Чебров В.Н., Абубакиров И.Р.** Цифровые записи колебаний грунта при Олюторском землетрясении (Корякия, 20.04.2006, *Мw*=7.6) и его афтершоках // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научно-техническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007. С. 39.
- 38. **Рогожин Е.А., Овсюченко А.Н., Мараханов А.В., Новиков С.С.** Олюторское землетрясение в Корякии 20 (21) апреля 2006 г.: материалы сейсмотектонических исследований // Проблемы современной сейсмогеологии и геодинамики Центральной и Восточной Азии. Материалы Всероссийского совещания с международным участием. Т. 2. Иркутск: ИЗК СО РАН, 2007. С. 112–117. //→РЖ «Физика Земли». 2008. № 8 (реф. 41).
- 39. **Рогожин Е.А., Овсюченко А.Н., Мараханов А.В., Новиков С.С.** Сейсмодислокации Олюторского землетрясения в Корякии 20 (21) апреля 2006 г. // Доклады РАН. 2008. **419**. № 3. С. 397–399. // \rightarrow РЖ «Физика Земли». 2009. № 2 (реф. 45).
- 40. Чебров В.Н. Олюторское землетрясение 20 апреля 2006 г.: сейсмологические наблюдения на территории КАО, организационно-технические проблемы, первые результаты исследований // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая Региональная научнотехническая конференция. Тезисы докладов. − Петропавловск-Камчатский: КФ ГС РАН, 2007. − С. 54.
- 41. **Рогожин Е.А., Гордеев Е.И., Чебров В.Н.** Сильное землетрясение в Корякии 20 (21) апреля 2006 г.: результаты предварительного изучения // Физика Земли. -2007. -№ 2. C. 3-11. // \rightarrow РЖ «Физика Земли». -2007. -№ 8 (реф. 58).
- 42. **Константинова Т.Г.** Степени повреждения зданий при Олюторском землетрясении // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научнотехническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007. С. 41.
- 43. **Константинова Т.Г.** Макросейсмические последствия Олюторского землетрясения (20) 21 апреля 2006 г. в поселке Корф // Проблемы современной сейсмогеологии и геодинамики Центральной и Восточной Азии. Материалы Всероссийского совещания с международным участием. Т. 1. Иркутск: ИЗК СО РАН, 2007. С. 152–158. //→РЖ «Физика Земли». 2008. № 5 (реф. 34).
- 44. **Митюшкина** С.**В.**, **Иванова Е.И.** Макросейсмическая оценка последствий Олюторского землетрясения 20 (21) апреля 2006 г. на территории КАО, Камчатской и Магаданской областей // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научно-техническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007. С. 46.
- 45. **Богданов В.В., Шумилова А.Л.** Предварительные результаты обработки измерении электромагнитного поля в диапазоне 0–20 *κГц*, зарегистрированных на ИСЗ «DEMETER» (Франция) накануне землетрясения в Корякии 20.04.2006 // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Первая региональная научно-техническая конференция. Тезисы докладов. Петропавловск-Камчатский: КФ ГС РАН, 2007 г. С. 111.

- 46. **Левин В.Е., Бахтиаров В.Ф., Павлов В.М., Титков Н.Н., Сероветников С.С.** Предварительные результаты геодинамических исследований Олюторского землетрясения (20.04.06) по данным Камчатской GPS сети // Олюторское землетрясение 20 (21) апреля 2006 г., Корякское нагорье. Первые результаты исследований. Петропавловск-Камчатский: ГС РАН, 2007. С. 251–262.
- 47. **Левина В.И., Ландер А.В., Иванова Е.И., Митюшкина С.В., Титков Н.Н.** Олюторское землетрясение 20 апреля 2006 г. с Mw=7.6, $K_{\rm S}$ =15.7, $I_{\rm 0}$ =10 (Камчатка). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 48. **Ammon C.J., Kanamori H., Lay T., Velasco A.A.** Цунамигенное Яванское землетрясение 17 июля 2006 г. The 17 July 2006 Java tsunami earthquake // Geophys. Res. Lett. 2006. 33, N 24. P. L24308/1–L24308/5. //→РЖ «Физика Земли». 2008. № 5 (реф. 39).
- 49. **Fujii Yu., Satake K.** Очаг цунами на западе Явы 17 июля 2006 г. по записям мареографов. Source of the July 2006 West Java tsunami estimated from tide gauge records // Geophys. Res. Lett. 2006. . 33, N 24. P. L24317/1–L24317/5. //→РЖ «Физика Земли». 2008. № 5 (реф. 38).
- 50. **Bilek S.L., Engdahl R.E.** Характеристики процесса вспарывания и уточнение положения афтершоков цунамигенных землетрясений 1994 и 2006 гг. в Яванской зоне субдукции. Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone // Geophys. Res. Lett. 2007. 34, N 20. P. L20311/1–L20311/5. //→РЖ «Физика Земли». 2008. № 6 (реф. 62).
- 51. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В., Рыжикова М.И. Развитие сейсмического процесса в очаговой зоне Симуширских землетрясений 15.11.2006 г. и 13.01.2007 г. с магнитудами *M*>8.0 // Современные методы обработки и интерпретации сейсмологических данных. Материалы Третьей Международной сейсмологической школы. Обнинск: ГС РАН, 2008. С. 181–187.
- 52. **Полец А.Ю., Некрасов М.А.** Морские сейсмические исследования ГСЗ в очаговой зоне катастрофических Симуширских землетрясений 15.11.2006 г. и 13.01.2007 г. в северо-западной части Тихого океана // Океанологические исследования. Тезисы докладов конференции молодых ученых Тихоокеанского океанологического института им. В.И. Ильичева. Владивосток: ТОЙ ДВО РАН, 2008. С. 53. //→РЖ «Физика Земли». 2008. № 12 (реф. 42).
- 53. **Kenshin J.** Землетрясения 2006 и 2007 гг., произошедшие к востоку от Курильских островов // Quart. J. Seismol. 2008. 71. N 1–4. Р. 103–135. //→ РЖ «Физика Земли». 2009. № 3 (реф. 26).
- 54. **Лобковский Л.И., Рабинович А.Б., Куликов Е.А., Иващенко А.И., Фаин И.В., Томсон Р.Е., Ивельская Т.Н., Богданов Г.С.** Курильские землетрясения и цунами 15 ноября 2006 г. и 13 января 2007 г. (наблюдения, анализ и численное моделирование) // Океанология. 2009. 49. № 2. С. 181–197. //→ РЖ «Физика Земли». 2009. № 10 (реф. 37).
- 55. **Тараканов Р.3.** Уроки Симуширских землетрясений 15 ноября 2006 г. (*Мw*=8.3) и 13 января 2007 г. (*Мw*=8.1) // Вулканология и сейсмология. 2008. № 6. С. 41–54. //→РЖ «Физика Земли». 2009. № 6 (реф. 176).
- 56. **Федотов С.А., Соломатин А.В., Чернышев С.Д.** Афтершоки и область очага Среднекурильского землетрясения 15.XI.2006 г., M_S =8.2; долгосрочный сейсмический прогноз для Курило-Камчатской дуги на IV.2008–III.2013 гг. // Вулканология и сейсмология. 2008. № 6. С. 3–23. // \rightarrow РЖ «Физика Земли». 2009. № 6 (реф. 175).
- 57. **Guo Z., Gao X., Wang W., Diqiu W.X.** Процесс разрывообразования при землетрясении с M_S =7.2, произошедшем 12 декабря 2006 г. у южного побережья Тайваня // Chin. J. Geophys. 2008. 51, N 4. P. 1103–1113. //→ РЖ «Физика Земли». 2009. № 1 (реф. 51).
- 58. Старовойт О.Е., Чепкунас Л.С., Габсатарова И.П. Хроника сейсмичности Земли. Индонезия и Камчатка: извержения вулканов предшествовали землетрясению // Земля и Вселенная. 2007. № 1. С. 91–92.