КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Г.И. Брагина, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

В 2001 г. на территории Курильских островов работали три сейсмические станции Сахалинской опытно-методической сейсмологической партии (СОМСП) ГС РАН: «Курильск», «Северо-Курильск» и «Южно-Курильск» (табл. 1). Для определения параметров землетрясений региона дополнительно привлекались инструментальные данные сейсмических станций Сахалина [1] и Приамурья [2], а также бюллетени ГС РАН [3], ЈМА, Национального информационного центра по изучению землетрясений (NEIC, США), ISC [4].

Таблица 1. Сейсмические станции Курило-Охотского региона (в хронологии их открытия), работавшие в 2001 г., и их параметры

No	Ста	анция		Дата	Кос	рдинаты	I	Аппаратура						
	Название	Ко	ЭД	открытия	φ°, N	λ°, E	h,	Тип	Компо-	$V_{ m max}$	$\Delta T_{\rm max}$,			
		межд.	рег.		, ,	ŕ	\mathcal{M}	прибора	нента	чувстви-	С			
			-							тельность				
1	Северо-	SKR	СВК	03.1958	50.670	156.070	22	СКМ-3	N, E, Z	20000	0.36-0.65			
	Курильск								N, E, Z	10000	0.36-0.65			
									N, E, Z	5000	0.36-0.65			
								СКД	N, E, Z	1000	0.20-20.0			
									N, E, Z	500	0.20-18.0			
								N, E, Z		200	0.20-16.0			
								СКД-КПЧ	N, E, Z	50	0.2-19.0			
								велосиграф	N, E, Z	10.0 <i>c</i>	0.02 - 5.8			
								C-5-C						
									N, E, Z	1.0 c	0.02 - 5.8			
								ОСП-2М	N, Z	$0.04 c^2$	0.01-5.0			
									E	$0.04 c^2$	0.01-4.0			
								CCP3-M	N	$0.0019 c^2$	0.04-10.0			
									E	$0.0022 c^2$	0.04-10.0			
									Z	$0.0023 c^2$	0.04-10.0			
								CM-3	N, E, Z	25.0	0.01-1.3			
									N, E, Z	1.0	0.01-1.3			
								УБОПЭ-2	N, E	33.0	0.05 - 3.5			
								CMP-2	N, E	7.0	0.05-6.0			
								CMP-0	N	1.0	0.05 - 5.0			
								СБМ		1.1	0.23-0.27			
2	Южно-	YUK	ЮКР	10.1960	44.035	145.861	28	CKM-3	N, E, Z	10000	0.25-0.5			
	Курильск								N, E, Z	5000	0.25-0.5			
									N, E, Z	2500	0.25-0.5			
								СКД	N, E, Z	1000	0.20-20.0			
									N, E, Z	500	0.15-17.0			
									N, E, Z	200	0.15-15.0			
								велосиграф N, E,		10.0 c	0.015-4.6			
								C-5-C						
									N, E, Z	1.0 c	0.015-4.6			
								CCP3-M	N	$0.0204 c^2$	0.06->1			
									E	$0.0201 c^2$	0.055->1			
									Z	$0.0191 c^2$	0.05->1			

№	<u>•</u> Станция			Дата	Ко	ординать	J		Ап	паратура	
	Название	Ко	ЭД	открытия	φ°, N	λ°, E	h,	Тип	Компо-	V _{max} /	$\Delta T_{\rm max}$,
		межд.	рег.	7	,		м	прибора	нента	чувстви-	c
										тельность	
								AC3	N	$0.0541 c^2$	0.06->0.15
									E	$0.0590 c^2$	0.07->1
									Z	$0.0574 c^2$	0.05-0.075
3	Курильск	KUR	КУР	01.1965	45.23	147.87	40	СКМ-3	N, E, Z	20000	0.37-0.68
									N, E, Z	10000	0.37-0.68
									N, E, Z	5000	0.37-0.68
								СКД	N, E, Z	1000	0.2 - 20.0
									N, E, Z	500	0.2 - 18.0
									N, E, Z	200	0.2 - 15.0
								СКД-КПЧ	N, E, Z	20	0.2 - 15.0
								велосиграф	N	0.5 c	0.045-4.6
								C-5-C			
									N	10.0 <i>c</i>	0.053-4.6
									Z	0.5 c	0.044-4.6
									Z	10.0 <i>c</i>	0.053-4.6
									E	0.5 c	0.047-4.6
									E	10.0 c	0.053-4.6
								ОСП-2М	N	$0.045 c^2$	0.015-1.1
									E	$0.045 c^2$	0.014–1.1
									Z	$0.045 c^2$	0.013-2.2
						CCP3-M N			$0.0021 c^2$	0.04-10.0	
									E	$0.0022 c^2$	0.04-10.0
									Z	$0.0024 c^2$	0.04-10.0
								СБМ		1.1	0.15-0.3

Примечание. Велосиграфы С-5-С, акселерографы ОСП-2М и ССР3-М работают в ждущем режиме регистрации.

Методика обработки данных [5–13], схема деления региона на отдельные сейсмоактивные районы и параметры аппаратуры на сейсмических станциях региона, по сравнению с таковыми в предыдущие годы [14, 15], не изменились.

В региональный каталог землетрясений за 2001 г. [16] включено 541 землетрясение с $MLH \ge 4.0~(K_{\rm C} \ge 9)$, что несколько меньше, чем в 2000 г. (N=594) [15]. Карта их эпицентров представлена на рис. 1.

В табл. 2 приведено распределение землетрясений по интервалам глубины h, из которой следует, что 71 % землетрясений реализовались на глубинах $h \le 80 \ км$. Максимальная зарегистрированная глубина гипоцентра составила в $2001 \ r$. $h = 527 \pm 5 \ км$ для довольно слабого (MPVA = 4.8) землетрясения 5 февраля в $10^{\rm h}14^{\rm m}$ под акваторией Охотского моря.

 $\it Taблица 2.$ Распределение землетрясений с известной глубиной гипоцентра по интервалам $\it h$

h, км	$N_{\!\Sigma}$	h, км	$N_{\!\scriptscriptstyle \Sigma}$	h, км	$N_{\!\scriptscriptstyle \Sigma}$
0 - 10	1	81 - 90	22	201 - 250	4
11 - 20	_	91 - 100	9	251 - 300	6
21 - 30	24	101 - 110	8	301 - 350	4
31 - 40	113	111 - 120	12	351 - 400	11
41 - 50	95	121 - 130	13	401 - 450	11
51 - 60	68	131 - 140	15	451 - 500	6
61 - 70	47	141 - 150	13	501 - 550	7
71 – 80	35	151 - 200	17	550 - 600	_

Распределение числа землетрясений по магнитуде и суммарная сейсмическая энергия по районам Курило-Охотского региона приведены в табл. 3. Суммарная сейсмическая энергия, выделившаяся в очагах мелкофокусных ($h \le 80 \ км$) землетрясений в 2001 г., почти в 1.4 раза меньше энергии глубокофокусных толчков.

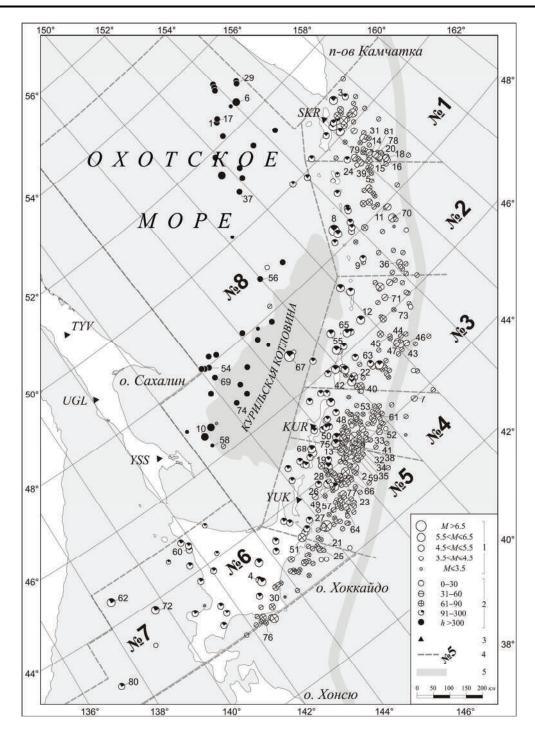


Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона в 2001 г.

1 — магнитуда M, равная MLH для землетрясений с h≤80 κm и MSH — с h>80 κm ; 2 — глубина h гипоцентра, κm ; 3 — сейсмическая станция; 4 — граница и номер района соответственно; 5 — ось глубоководного Курило-Камчатского желоба. Числа возле эпицентров — номера землетрясений в соответствии с графой 1 регионального каталога [16].

Сильнейшее (MLH=7.2) землетрясение региона (32 на рис. 1) произошло 25 мая в $00^{\rm h}40^{\rm m}$ западнее о. Итуруп на глубине h=65 \pm 7 κM . Оно ощущалось в г. Курильск с интенсивностью 4 балла, в пос. Южно-Курильск – 3 балла, на территории Японии – до 3–4 баллов. Всего в течение года отмечено 70 ощутимых землетрясения [16], лишь одно из них (27 на рис. 1), произошедшее 26 апреля в $17^{\rm h}48^{\rm m}$ на глубине h=85 κM чуть западнее о. Хоккайдо, проявилось с максимальным макросейсмическим эффектом в 6–7 баллов по шкале MSK-64 [17] (IV балла по шкале JMA [18]). Данные о максимальной интенсивности сотрясений и максимальной магнитуде землетрясений в каждом из восьми районов Курило-Охотского региона представлены в табл. 4.

Таблица 3. Распределение мелких (h≤80 κm) и глубоких (h>80 κm) землетрясений региона по магнитуде MLH и MSH и суммарная сейсмическая энергия ΣE по районам

			,	h≤80 κ.	h≤80 км														
№	Район					N_{Σ}	$\Sigma E \cdot 10^{12}$												
		4.0	4.5	5.0	5.5	6.0	6.5	7.0		Дж									
1	Парамуширский	13	22	7	2	_	_	_	44	51.12									
2	Онекотан-Матуанский	22	12	_	_	1	_	_	35	50.11									
3	Симушир-Урупский	25	13	7	_	1	_	_	46	81.28									
4	Северо-Итурупский	74	29	7	1	1	_	1	113	4082.53									
5	Кунашир-Шикотанский	70	28	4	1	1	_	_	104	72.21									
6	Остров Хоккайдо	26	5	1	1	_	_	_	33	12.59									
7	Японское море	1	1	_	_	_	_	_	2	0.25									
8	Охотское море	5	1	_	_	_	_	_	6	0.56									
	Всего	236	111	26	5	4	0	1	383	4350.65									

 $h > 80 \ км$

No	Район				MSH				N_{Σ}	$\Sigma E \cdot 10^{12}$
		4.0	4.5	5.0	5.5	6.0	6.5	7.0		Дж
1	Парамуширский	_	1	4	5	2	_	_	12	52.71
2	Онекотан-Матуанский	_	1	6	7	1	1	_	16	631.97
3	Симушир-Урупский	_	_	3	12	6	1	_	22	418.00
4	Северо-Итурупский	_	_	5	7	2	_	_	14	35.88
5	Кунашир-Шикотанский	_	_	8	11	4	_	1	24	3926.15
6	Остров Хоккайдо	1	2	5	12	2	_	_	22	46.85
7	Японское море	_	3	1	1	2	_	_	7	86.95
8	Охотское море	4	9	19	4	4	1	_	41	768.85
	Всего	5	16	51	59	23	3	1	158	5967.36

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов $K_{\rm C}$ для землетрясений с $h \le 80$ км и из магнитуд MSH с $h \ge 80$ км по следующим соотношениям: $MLH = (K_{\rm C} - 1.2)/2$ и MLH = (MSH - 1.71)/0.75 соответственно. Для второго соотношения вводилась поправка за глубину очага.

Таблица 4. Распределение землетрясений с известной глубиной гипоцентра по интервалам глубины h, максимальные значения интенсивности сотрясений I_{\max} и магнитуды M_{\max} по районам

№	Районы	h, км	N_{Σ}	$N_{ m out.}$	I_{max}		$\frac{M_{\max}}{MLH MSH}$		Районы	h, км	N_{Σ}	$N_{ m om.}$	I_{\max}	$M_{ m r}$	
1	Парамуширский	0-30	1	_	_	_			Кунашир-	0-30	6	_	_	4.0	_
		31-80	43	11	3	5.2	6.0		Шикотанский	31-80	98	16	5	5.8	6.4
		81-154	12	4	3	3.9	(6.0)			81 - 174	24	6	6–7	6.4	7.1
2	Онекотан-	0-30	2	_	_	4.3	_	6	Остров	0-30	3	_	_	_	_
	Матуанский	31-80	33	_	_	5.9	6.6		Хоккайдо	31-80	30	15	5	5.4	6.0
		81-158	16	1	2	5.1	6.7			81-261	22	5	5	3.9	5.8
3	Симушир-	0-30	3	_	_	_	_	7	Японское море	0-30	1	1	3–4	4.4	_
	Урупский	31-80	43	_	_	6.0	6.2			31-80	1	1	3–4	_	_
		81-218	22	1	2–3	5.5	6.5			81-286	7	2	3–4	4.7	6.2
4	Северо-	0-30	7	_	_	4.2	_	8	Охотское море	0-30	2	_	_	-	_
	Итурупский	31-80	106	4	4	7.2	7.2 6.8			31-80	4	_	_	3.1	5.0
		81-167	14	1	2–3	4.0	5.8			81-527	41	2	3–4	6.2	6.7

Примечание. В скобках – значение магнитуды по короткопериодной аппаратуре СКМ-3.

По совокупности знаков первых вступлений продольных волн, записанных мировой сетью станций, определены механизмы очагов 76 землетрясений с $MLH \ge 4.0$: 49 — мелкофокусных $(h \le 80 \ \kappa M)$, 16 — с промежуточной глубиной гипоцентра $(h = 81 - 300 \ \kappa M)$, 12 — глубокофокусных

(*h*>300 км). Параметры механизмов очагов представлены в каталоге [19], распределение землетрясений с известным механизмом очага по районам региона и глубине гипоцентра – в табл. 5, стереограммы механизмов очагов – на рис. 2. Ниже дано краткое описание сейсмичности в каждом из районов.

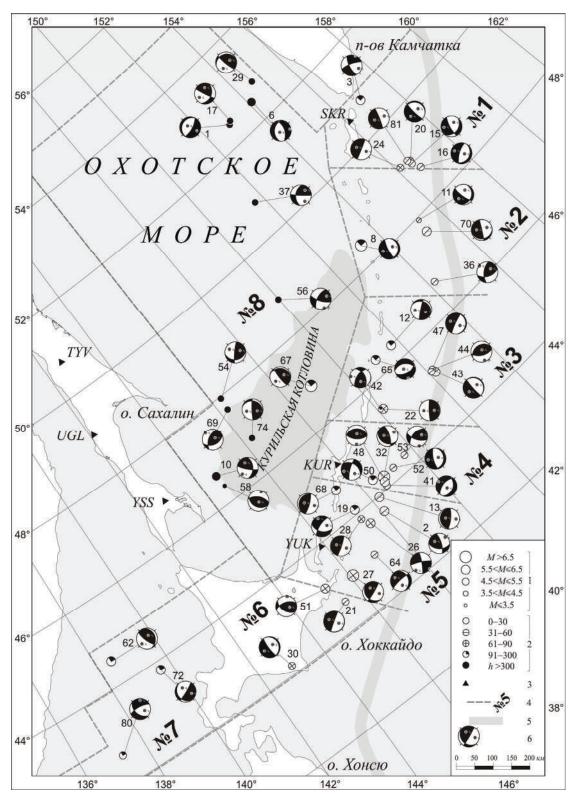


Рис. 2. Карта механизмов очагов землетрясений Курило-Охотского региона в 2001 г.

1-5 соответствуют рис. 1; 6 - стереограмма механизма очага в проекции на нижнюю полусферу, зачернена область волн сжатия.

-													
$N_{\underline{0}}$	Номер эпицентра на рис. 1												
р-на		Интервал	глубин, <i>км</i>										
	h=0-30	h=31-80	h=81-300	h>300									
1	_	14, 15, 16, 18, 20, 24, 31, 78, 79, 81	3	_	11								
2	-	5, 11, 36, 39, 70	8	_	6								
3	-	43, 44, 45, 46, 47, 63, 73	12, 22, 42, 65	_	11								
4	61	7, 32, 33, 34, 35, 38, 40, 41, 48, 52, 53, 75	50	_	14								
5	-	2, 13, 23, 28, 49, 57, 59, 64, 66, 77	19, 26, 27, 68	_	14								
6	_	21, 25, 30, 76	51	_	5								
7	-	-	62, 72, 80	_	3								
8	_	_	67	1, 6, 10, 17, 29, 37, 54, 56, 58, 69, 74	12								
Всего	1	48	16	11	76								

Таблица 5. Номера Курило-Охотских землетрясений 2001 г. с известным механизмом очага в каждом из 8 районов в слоях 0-30, 31-80, 81-300 и >300 км из [16]

В Парамуширском районе (№ 1) почти 79 % землетрясений произошло на глубине $h \le 80~\kappa m$. Самые сильные землетрясения района (16 и 20 на рис. 1) произошли 31 марта в $18^{\rm h}30^{\rm m}$ на глубине $h = 44 \pm 4 \kappa m$ с MLH = 5.1 и 7 апреля в $03^{\rm h}46^{\rm m}$ на глубине $h = 44 \pm 3~\kappa m$ с MLH = 5.2. Оба землетрясения ощущались в Северо-Курильске с интенсивностью сотрясений 2 и 2-3 балла соответственно. Всего в районе отмечено 15 ощутимых землетрясений, из них для землетрясений 15 мая в $15^{\rm h}15^{\rm m}$ с MPVA = 4.3 и 16 сентября в $17^{\rm h}03^{\rm m}$ с MPVA = 4.9 интенсивность сотрясений составила $I_{\rm max} = 3$ балла, для других — ниже [16]. Определены механизмы очагов одиннадцати землетрясений, десять из которых произошли на глубине $h = 31 - 80~\kappa m$, одно — на глубине $h = 139~\kappa m$ (табл. 5). Очаги землетрясений 14, 31, 78, 79 находились преимущественно под воздействием напряжений сжатия, обусловивших подвижки типа взброса по крутым плоскостям и надвига — по пологим. В очагах землетрясений 24, 81 преобладали сдвиговые подвижки. В очагах 15, 16, 20 преобладало напряжение растяжения, что обусловило подвижки типа сброса и взреза. Тип сейсмодислокации в очаге землетрясения 3 с MLH = 3.9, $h = 139~\kappa m$, зарегистрированном 22 января в $03^{\rm h}17^{\rm m}$ — сдвиг [19].

В **Онекотан-Матуанском** районе (№ 2) 69 % землетрясений отмечено на глубине $h \le 80 \ \kappa m$. Самое сильное мелкофокусное землетрясение (70 на рис. 1) с $MLH = 5.9 \ u \ h = 33 \pm 3 \ \kappa m$ произошло 9 октября в $23^{\rm h}53^{\rm m}$, а самое сильное — из промежуточного слоя (8 на рис. 1) с $MSH = 6.7 \ u \ h = 148 \pm 5 \ \kappa m - 14 \ февраля в <math>13^{\rm h}36^{\rm m}$. Оно было единственным ощутимым в Онекотан-Матуанском районе (I = 2 балла в г. Северо-Курильск на расстоянии $309 \ \kappa m$).

Определены механизмы очагов землетрясений 5, 8, 11, 36, 39, 70 [19]. Из них только толчок 8 с гипоцентром в промежуточном слое, остальные — в верхнем интервале глубин (рис. 2, табл. 5). В очагах землетрясений 5, 11 преобладали напряжения растяжения, которые обусловили подвижку типа поддвига по пологим плоскостям и сброса — по крутым. В очагах 36, 39, 70 преобладали напряжения сжатия, что привело к взбросам в очагах 36, 39 и сдвигу в очаге 70. В очаге 8 произошел поддвиг по пологой плоскости и сброс — по крутой.

В Симушир-Урупском районе (№ 3) 68 % землетрясений отмечено на глубине $h \le 80 \ \kappa m$. Самое сильное (MLH=6.0) — в районе мелкофокусное ($h=44\pm3 \ \kappa m$) землетрясение 43 (рис. 1) — отмечено 20 июня в $00^{\rm h}04^{\rm m}$. В промежуточном глубинном интервале самыми сильными были землетрясения 12 и 22. Первое произошло 17 марта в $07^{\rm h}24^{\rm m}$ на глубине $h=125\pm7 \ \kappa m$ с MSH=6.5, второе — 17 апреля в $04^{\rm h}53^{\rm m}$ на глубине $h=84\pm4 \ \kappa m$ с MSH=6.2. Ощутимым было лишь землетрясение 42, произошедшее 13 июня в $02^{\rm h}15^{\rm m}$ на глубине $h=128\pm8 \ \kappa m$ с MLH=4.5. Его макросейсмический эффект составил 2—3 балла в г. Курильск ($\Delta=173 \ \kappa m$) [16].

В этом районе определены механизмы очагов одиннадцати землетрясений, семи – с гипоцентрами в верхнем интервале глубины, четырех – в промежуточном слое (табл. 5). В очагах 43, 45, 46, 47 преобладали напряжения растяжения, что обусловило подвижки типа сброса по крутым плоскостям и поддвига – по пологим. Очаги 44, 63, 73 находились преимущественно под воздействием напряжений сжатия, для которых характерный тип подвижки – взброс и пологий надвиг. Для землетрясений 12, 22, 42, 65 с промежуточной глубиной очага характерный тип подвижки – взброс, сброс и пологий надвиг [19].

В Северо-Итурупском районе (№ 4) 89 % землетрясений произошло на глубине $h \le 80 \ км$. Уровень сейсмичности в его пределах возрос, по сравнению с таковым в 2000 г. [15]. К востоку от о. Итуруп зарегистрировано самое сильное (MLH=7.2, MSH=6.1) землетрясение (32) во всем Курило-Охотском регионе (рис. 1). Оно произошло 25 мая в $00^{\rm h}40^{\rm m}$ на глубине $h=65\pm7 \ км$ и ощущалось с интенсивностью 4 балла в г. Курильск ($\Delta=196 \ км$), $3-4 \ балла-в \ Японии и 3 балла-в Южно-Курильске [16]. Землетрясение сопровождалось афтершоками (табл. 8).$

Таблица 8. Основные параметры главного толчка и афтершоков землетрясения 25 мая в $00^{\rm h}40^{\rm m}$ с MLH=7.2

№	Дата,		t_0		Эпиг	центр	h,	MLH	K_{C}	№	Дата,	t_0	Эпиг	центр	h,	MLH	K_{C}
	д м	ч	мин	ı c	φ°, N	•	км				д м	м ч мин с	φ°, N	λ°, E	км		
	•			Осн	овной	толчок				50	02.07	11 55 26	44.4	148.4	97		12
			l .	l					T		02.07	16 49 14	44.2	148.8	59	3.7	10.5
32	25.05	00	40	53	44.3	148.8	65	7.2	14*	52	06.07	11 33 52	44.3	149.2	70	5.5	12
	Афтершоки										06.07	11 35 33	44.4	149.7	63		10.5
	25.05	00	52	23	44.1	148.6	52		10		06.07	11 37 11	44.3	149.6	43		10
	25.05	00	54	52	44.1	148.8	39		11.5		06.07	19 47 18	44.4	149.9	55	4.1	11
	25.05	01	03	40	44.2	148.7	62		10		07.07	00 23 32	44.6	148.6	32	4.0	9
	25.05	01	19	43	44.2	148.8	35		9	53	07.07	05 37 52	44.3	149.7	51	4.8	11
	25.05	01	26		44.1	148.6	46		11		13.07	19 36 46	44.3	148.2	34		9
33	25.05	01	53	47	44.1	149.0	45		11		16.07	00 57 05	44.5	148.1	102		10
33	25.05	01	58		44.1	148.8	40		10		18.07	01 00 59	44.3	149.4	42		9
34		02	49	15	44.2	148.7	63	4.3	11.5		19.07	19 01 24	44.9	149.6	57		10
٥.	25.05	04	10	57	44.2	148.7	45	1.3	9		29.07	07 59 06	44.6	149.1	68		9.5
	25.05	05	12	46	44.0	149.1	36		9		03.08	23 04 00	44.5	148.4	30		9.5
	25.05	07	25	38	44.1	148.7	35		9		19.08	22 50 28	44.2	148.7	36		10
	25.05	07	46		44.1	148.7	43		9		27.08	05 11 11	44.4	148.4	31		9
35	25.05	08	24	11	44.1	148.5	59	4.6	11.5		30.08	05 00 47	44.4	148.5	69		9.5
55	25.05	10	02	26	44.1	148.5	31	1.0	9		30.08	09 33 24	44.7	149.3	36		9
	25.05	12	04	02	44.0	148.8	31		10		30.08	13 13 42	44.8	149.2	62	2.0	9
	25.05	15	24	07	44.1	148.8	34		9.5		04.10	14 46 55	44.1	148.7	58	3.8	10
	25.05	20	49	29	44.1	148.7	31	3.3	10		16.10	02 29 48	44.6	148.6	50		10
	27.05	07	59	28	44.0	148.6	57	3.4	10.5		16.10	04 29 51	44.5	148.5	34		9.5
	27.05	11	44	33	44.0	148.7	52	5	9.5		16.10	04 36 40	44.5	148.7	32		10
	28.05	14		59	44.6	148.6	64		10		29.10	12 30 32	44.0	148.5	51		10
38	29.05	02	10	12	44.1	148.6	49	4.6	12		02.11	10 28 59	44.5	149.3	61		9
20	29.05	14	54	43	44.1	148.6	52		9	75	13.11	09 21 59	44.2 44.4	148.3 148.3	40	4.4	9
	29.05	17	27	53	44.2	148.7	37		9.5	/3	18.11	03 49 41			64 25	4.4	11
	02.06	17	35	23	44.2	148.6	57	3.3	10		23.11	04 16 57	44.6	149.0			9.5
41	12.06	22	41	29	44.1	148.7	41	5.0	12		02.12	18 52 29	44.3	149.0	66		10
	23.06	00		39	44.1	149.1	39		9.5		04.12	04 28 02	44.0	148.4	34		9.5
	23.06	00			44.2	148.9	53	3.8	10		13.12 13.12	04 32 50 04 57 51	44.4	148.4	67 55	4.1	9 11
48	24.06	13	18		44.2	148.7	43	6.0	13				44.0	148.5	55 56	4.1	
	200	1.5	10	52		1 10.7		0.0	15	l	23.12	19 04 37	44.2	148.7	56		9.5

Примечание. Указанные номера землетрясений соответствуют таковым в первой графе каталога [16].

Самый сильный афтершок этого землетрясения, зарегистрированный 24 июня в $13^{\rm h}18^{\rm m}$, имел магнитуду *MLH*=6.0. Следовательно, величина магнитудного интервала между главным толчком и максимальным афтершоком составляет:

$$\Delta M = M_0 - M_a = 7.2 - 6.0 = 1.2.$$

Этот афтершок вызвал сотрясения в 3 балла в Курильске (Δ =131 κ M), Южно-Курильске (Δ =225 κ M) и 1–2 балла – в Японии ([16].

Всего в районе пять ощутимых землетрясений: 29, 30, 31, 32,33 [16].

Для четырнадцати землетрясений района определены механизмы очагов, из которых тринадцать — с гипоцентрами в верхнем интервале глубины, одно — в промежуточном слое (табл. 5, [19]). Очаг самого сильного землетрясения (32) находился преимущественно под воздействием близгоризонтального напряжения сжатия, тип подвижек — взброс по крутой плоскости и надвиг

по пологой. Такие же подвижки имели место в очагах 34, 38, 48, 61 и почти чистые взбросы в очагах 53, 75. В очагах 7, 33, 35, 40, 41, 50, 52 превалировали напряжения растяжения, что определило тип подвижек – сбросы по крутым плоскостям и поддвиги – по пологим.

В **Кунашир-Шикотанском** районе (№ 5) свыше 80 % землетрясений зарегистрировано на глубине $h \le 80 \ \kappa m$. Наиболее заметными среди мелкофокусных землетрясений были толчки 2 и 13 (рис. 1). Первый произошел 3 января в 14^h47^m с MLH=5.6, $h=53\pm 5 \ \kappa m$ с максимальной интенсивностью сотрясений I=4-5 баллов в пос. Горный (135 κm , о. Итуруп), а также с I=3-4 балла в Курильске (167 κm), Китовом (169 κm), Рейдово (170 κm) и в Японии II(3-4) [16]. Второй – 23 марта в 11^h30^m с MLH=5.8, $h=42\pm 5 \ \kappa m$ вызвал колебания в 3-4 балла в том же пос. Горный (118 κm) и в Японии II(3-4), а в Курильске (136 κm), Китовом (142 κm), Рейдово (144 κm), Южно-Курильске — 3 балла [16]. Среди землетрясений с промежуточной глубиной очага самым сильным (MSH=7.1) в регионе был толчок 27 (рис. 1), зарегистрированный 26 апреля в 17^h48^m на глубине $h=85 \ \kappa m$, который ощущался в Японии с интенсивностью сотрясений в IV(6-7) балла, в пос. Малокурильское (111 κm) — 5-6 баллов, Дубовом (98 κm), Менделеево (111 κm), Горячем пляже ($114 \ \kappa m$), Лагунном ($115 \ \kappa m$) — 5 баллов, Южно-Курильске ($115 \ \kappa m$) — 4-5 балла, Курильске ($116 \ \kappa m$) — 3 балла [16]. Всего в этом районе отмечено 22 ощутимых землетрясения (табл. 4).

Механизмы очагов определены для четырнадцати землетрясений, из них десять локализованы на глубинах $h=31-80~\kappa M$, четыре – с $h=81-300~\kappa M$ (рис. 2, табл. 5). В очагах 2, 13, 23, 28, 49, 57, 66, 77 преобладали напряжения сжатия, которые обусловили подвижки типа взброса и пологого надвига. В очагах промежуточного глубинного слоя наблюдались разные подвижки: в очагах 26, 27, 68 – сдвиги, в 19 – сброс по крутой плоскости и поддвиг по пологой.

В районе о. Хоккайдо (№ 6) зарегистрировано на глубине $h \le 80 \ кm$ 60 % землетрясений, 40 % – в интервале $h = 81 - 261 \ кm$. Отмечено 20 ощутимых землетрясений (табл. 4). Все они проявились в Японии с интенсивностью сотрясений до 5 баллов, и лишь два из них (13 апреля в $23^{\rm h}16^{\rm m}$ с MLH = 5.4. $h = 43 \ кm$ и 5 июля в $13^{\rm h}12^{\rm m}$ с MPV = 5.2, $h = 91 \ кm$) ощущались в пос. Южно-Курильск с I = 2 - 3 балла.

Определены механизмы очагов пяти землетрясений (рис. 2, табл. 5). В верхнем интервале глубины, в очагах землетрясений 21, 25, 30, 76 преобладали близгоризонтальные напряжения растяжения. В первых трех очагах характерный тип подвижек – сдвиг, в очаге последнего – сброс по крутой плоскости и поддвиг с компонентами сдвига – по пологой. Очаг землетрясения 51 в промежуточном интервале глубин (h=91 κm) находился под воздействием близгоризонтального напряжения сжатия, которое обусловило подвижки типа взброса.

Район **Японского моря** (№ 7) характеризовался слабой сейсмической активностью. Здесь зарегистрировано всего девять землетрясений, два — мелкофокусных, семь — в интервале глубины h=81–286 κm . Четыре землетрясения, произошедшие 25 августа в 18^h13^m с MSH=5.5, h=250 κm , 16 октября в 15^h49^m с MLH=4.4, h=29 κm , 3 ноября в 23^h34^m с MLH=4.6, h=193 κm и 27 ноября в 04^h28^m с MPVA=4.3, h=46 κm , ощущались в Японии с интенсивностью сотрясений I (1–2) балл от толчка 3 ноября и II (3–4) балла — от остальных трех [16].

Механизмы очагов определены для землетрясений 62, 72, 80 с гипоцентрами в промежуточном слое (рис. 1, табл. 5). В очаге 62 преобладало сжатие, подвижки — взброс по крутой плоскости и надвиг — по пологой. Очаг 72 находился под действием сжимающих (PL=48°) и растягивающих (PL=37°) напряжений, влияние которых привело к сдвиговым подвижкам. В очаге 80 преобладало напряжение растяжения, подвижка — сброс по крутой плоскости и поддвиг по пологой.

В Охотском море (№ 8) зарегистрировано шесть мелкофокусных ($h \le 51 \ \kappa m$) и 41 глубокофокусных ($h = 273 - 527 \ \kappa m$) землетрясений. Самое сильное (MLH = 6.2, MSH = 6.7, $h = 292 \pm 11 \ \kappa m$) в районе землетрясение -67 (рис. 1) - было ощутимым в Японии с макросейсмическим эффектом в II (3–4) балла, в Малокурильском (375 κm) -2-3 балла, в Южно-Курильске (399 κm) -2 балла. Ощутимым в Японии с I = II (3–4) балла и Южно-Курильске с I = 2 балла было также землетрясение 10 (рис. 1), зарегистрированное 26 февраля в $05^{\rm h}58^{\rm m}$ с MSH = 6.2, $h = 390 \pm 6 \ \kappa m$ [16].

Для двенадцати глубокофокусных землетрясений определены механизмы очагов. В очагах 17, 29, 54, 58, 67, 74 — взбросы по крутым плоскостям и надвиги — по пологим. В очаге землетрясения 69 взбросы по обеим плоскостям. Землетрясения 1 и 6 произошли под действием

растягивающих напряжений, обусловивших в их очагах сбросовые подвижки по крутым плоскостям и пологие надвиги по пологим плоскостям. Для землетрясения 10 по обеим нодальным плоскостям подвижки типа взброс с компонентами левостороннего сдвига по крутой плоскости и правостороннего – по пологой.

Литература

- 1. **Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А.** Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.)
- 2. **Фокина Т.А., Паршина И.А., Рудик М.И., Сафонов Д.А.** Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. **Сейсмологический бюллетень (ежедекадный) за 2001 год** / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2001–2002.
- 4. Bulletin of the International Seismological Centre for 2001. Berkshire: ISC, 2002–2003.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). М.: Наука, 1989. С. 32–51.
- 6. **Миталева Н.А., Бойчук А.Н.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 7. **Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. М.: Наука, 1996. С. 91–100.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). М.: Наука, 1979. С. 45—58.
- 9. **Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И.** Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. М.: Наука, 1977. С. 67—75.
- 10. **Соловьёв С.Л., Соловьёва О.Н.** Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. 1967. № 1. С. 37—60.
- 11. **Соловьёв С.Л., Соловьёва О.Н.** Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 12. **Соловьёва О.Н., Соловьёв С.Л.** Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 13. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 14. **Фокина Т.А., Давыдова Н.А., Рудик М.И., Дорошкевич Е.Н., Сафонов Д.А., Гуреев Р.Г., Микрюкова О.В.** Курило-Охотский регион // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 150—161.
- 15. **Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А.** Курило-Охотский регион // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 166–174.
- 16. **Брагина Г.И., (отв. сост.), Дорошкевич Е.Н., Пиневич М.В.** Курило-Охотский регион (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 17. **Медведев С.В.** (**Москва**), **Шпонхойер В.** (**Иена**), **Карник В.** (**Прага**). Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.
- Hisada T., Nakagawa K. Present Japanese Development in Engineering Seismology and their Application to Building. – Japan, 1958.
- 19. **Рудик М.И. (отв. сост.)** Курило-Охотский регион (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).