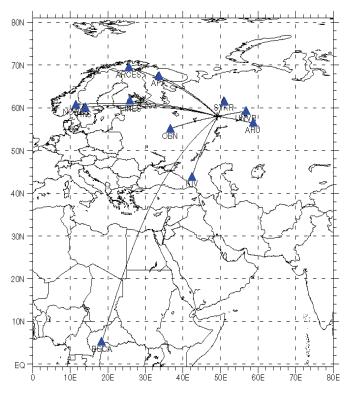
<u>II. МАКРОСЕЙСМИЧЕСКИЕ ОБСЛЕДОВАНИЯ</u>

УДК 550.348.098.32 (470.342)


ВЕРХОШИЖЕМСКОЕ ЗЕМЛЕТРЯСЕНИЕ 18 января 2000 года c MPSP=4.0, $K_{\rm P}$ =11.2, $I_{\rm 0}$ =5 (Кировская область) И.П. Габсатарова, Л.С. Чепкунас

Геофизическая служба РАН, г. Обнинск, ira@gsras.ru

Это землетрясение произошло 18 января в $04^{\rm h}05^{\rm m}$ в Кировской области, у истоков р. Шижма, впадающей в р. Вятка [1,2]. Оно было достаточно заметным для Восточно-Европейской платформы.

Его магнитуда по объемным волнам, определенная на четырех станциях «Обнинск», «Арти», «Кисловодск», «Сыктывкар» составила MPSP=4.0, а энергетический класс, рассчитанный с использованием шкалы Т.Г. Раутиан [3,4] по сейсмограммам аналоговой станции «Сыктывкар», соответствует K_P =11.2.

Исследуемое землетрясение стало одним из первых в этой области, зарегистрированных сетью сейсмических станций, расположенных не только на территории ВЕП и Урала, но и в других районах (рис. 1), что дало возможность достаточно уверенного определения его параметров по инструментальным данным. Согласно бюллетеню ISC [5], общее число записавших землетрясение станций составило n=17, а его параметры определены в четырех сейсмологических центрах (табл. 1).

Рис. 1. Расположение сейсмических станций и групп, зарегистрировавших Верхошижемское землетрясение

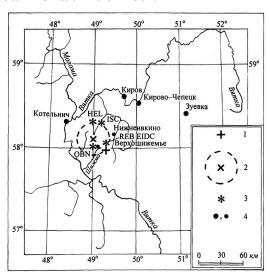

В Оперативном сейсмологическом бюллетене [6] участвовало девять станций, из которых четыре принадлежали сети ГС РАН – «Арти» (ARU) с Δ =5.46°, AZM=103°; «Обнинск» (OBN) с Δ =7.44°, AZM=252°; «Апатиты» (APA) с Δ =11.86°, AZM=330°; «Кисловодск» (KIV) с Δ =14.62°, AZM=198°. Остальные сведения были получены по обмену из REB EIDC (EIDC – Experimental International Data Center, Arlington, VA 22209, U.S.A.; REB – Reviewed Event Bulletin of the EIDC – уточненный или пересмотренный бюллетень событий Экспериментального международного центра, Арлингтон, США) [7]. Это данные трех сейсмических групп (FINES – в Финляндии с Δ =12.01°, AZM=296°; ARCES – в Норвегии с Δ =15.36°, AZM=328°; NORES – в Норвегии с Δ =19.07°, AZM=294°) и двух станций («Hagfors» (HFS) – в Швеции с Δ =18.11°, AZM=292° и «Водоіп» (ВGCA) – в Центральной Африканской Республике с Δ =57.84°, AZM=217°). Финская сейсмологическая сеть (код центра HEL [7]) зарегистрировала землетрясение девятью станциями на расстояниях Δ =9.8–13.7° в узком азимутальном створе AZM=290–321°. Обобщение имеющихся данных по этому землетрясению выполнено, как упомянуто выше, в Международном центре ISC, данные которого также даны в табл. 1.

Таблица 1. Основные параметры Верхошижемского землетрясения 18 января 2000 г. по данным разных агентств и макросейсмический эпицентр

Агентство	t_0 ,	δt_0 ,	Эпицентр			Сеть				h,	Магнитуда	Источ-	
	ч мин с	С	φ°, N	δφ°	λ°, E	δλ°	n	Δ_{min}	Δ_{max}	Gap	км		ник
Оперативный	04 05 40.7	2.85	58.033	0.24	48.962	0.12	9	5.5	57.8	136	10	MPSP=3.7/1	[6]
сейсмологический													
бюллетень ГС РАН													
REB EIDC	04 05 42.00	1.41	58.06	0.36	49.27	0.14	4	5.3	57.96	136	0	ML=3.6/3,	[7]
												$m_{\rm b}=2.9/1$,	
												MS=2.5/1,	
												$m_{\rm b}$ =3.7/1	
HEL	04 05 47.6	0.4	58.34	0.05	48.99	0.06	9	9.8	13.70	329	10	ML=3.2/4	[7]
ISC	04 05 39.4	0.83	58.30	0.09	49.1	0.17	17	5.43	58.12	137	10	$m_{\rm b}$ =3.8/1	[5, 7]
Макросейсмический			58.2	± 0.1	49.0	± 0.1							[1]
эпицентр													

Примечание. В графе глубин даны их фиксированные значения, использованные при локации.

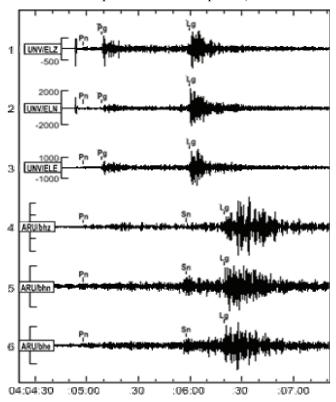

Эпицентры землетрясения, полученные разными центрами, и макросейсмический эпицентр изображены на рис. 2. Как видно из табл. 1, параметры хорошо согласуются между собой. Однако, согласно [7] они имеют большой эллипс ошибок.

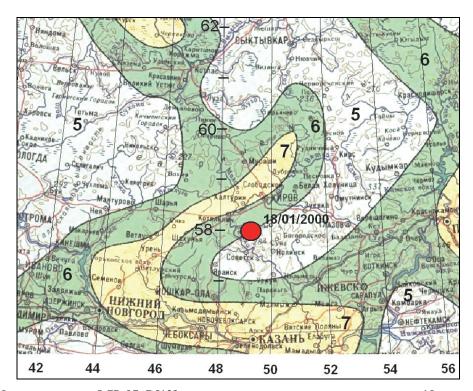
Рис. 2. Сопоставление решений эпицентра Верхошижемского землетрясения по данным разных центров

¹ — уточненный инструментальный эпицентр по данным ГС РАН; 2 — макросейсмический эпицентр в пунктирном контуре возможных его положений; 3 — инструментальный эпицентр по данным других служб; 4 — населенный пункт (город и деревня соответственно).

Этого факт послужил причиной дополнительного сбора данных и уточнения параметров этого землетрясения (табл. 2). При уточнении за основу были взяты данные Сейсмологического бюллетеня [6], к которым добавлены данные станций «Сыктывкар» с Δ =3.81°, AZM=10° (аналоговая сейсмограмма) и «Уньва» (UNVR) с Δ =4.6°, AZM=80° (цифровая запись), ближайших к эпицентру. Данные этих станций были предоставлены Институтом геологии Коми НЦ УРо РАН и Горным институтом Пермского научного центра УРо РАН. В отличие от Сейсмологического бюллетеня [6], в котором при локации использовались только времена первых вступлений P-волн, при уточнении дополнительно были введены вторичные фазы, выделяемые на региональных расстояниях: Pn, Pg, Sn, Lg (пример выделения этих фаз на цифровых станциях «Уньва» и «Арти» показан на рис. 3).

Рис. 3. Записи землетрясения 18 января 2000 г., фильтрованные в полосе $1-10 \Gamma u$ на двух цифровых станциях – «Уньва» и «Арти», принадлежащих Горному институту Пермского научного центра РАН и ГС РАН соответственно

Кроме дополнительного сбора данных, для уточнения эпицентра представляло интерес опробование, вместо обобщенного годографа IASPEI–91, годографа для Восточно-Европейской платформы (ВЕП). Последний годограф был построен в ходе выполнения работ по кинематической калибровке Международной сети сейсмических станций, формируемой организацией по Договору о Всемирном запрещении ядерных испытаний (ДВЗЯИ), с использованием сейсмических фаз от калибровочных источников – мирных ядерных взрывов, произведенных на ВЕП за период 1965–1988 гг. [8]. Для уточнения локации применялась программа LocSat [9], позволяющая с различными весами использовать вторичные фазы, выделенные на сейсмограммах. Результаты полученного решения (табл. 2) также представлены на рис. 2 вместе с данными всех центров.

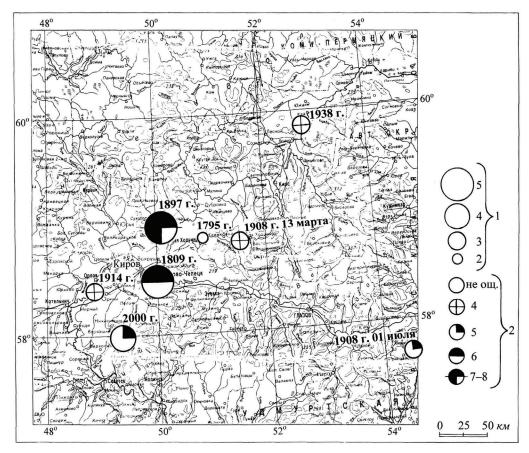

Таблица 2. Основные параметры Верхошижемского землетрясения 18 января 2000 г. по данным авторов с использованием годографа для ВЕП

Дата,	t_0 ,	δt_0 ,	Эпицентр				С	еть	h,	Магнитуда		
д мес год	ч мин с	С	φ°, N	δφ°	λ°, E	δλ°	n	Δ_{\min}	$\Delta_{ ext{max}}$	Gap	км	
18.01.2000	04 05 43.01	0.49	57.987	0.05	49.279	0.04	10	3.83	57.91	97	10f	MPSP=4.0/4,
												$K_{\rm P} = 11.2$

Для уточнения магнитуды по объемных волнам MPSP использовались данные четырех станций на расстояниях менее 20° и осредненная калибровочная функция [10]. Среднее значение MPSP составило 4.0 (табл. 2).

Макросейсмический эпицентр землетрясения согласно [1,2] находился в районе поселков Нижнеивкино и Верхошижемье. Подземный толчок сопровождался незначительными колебаниями почвы и ощущался жителями Адышевского, Кучелаповского и Коршикского сельских округов. Анализ макросейсмических данных опубликован А.А. Никоновым в [1], ориентировочные координаты макросейсмического эпицентра, снятые им с карты масштаба 1:1 000 000, составляют – ϕ =58.2°N, λ =49.0°E ±0.1, значение интенсивности сотрясений в эпицентре I_0 =5.

В тектоническом аспекте Верхошижемское землетрясение произошло вблизи зоны сочленения древней Восточно-Европейской платформы с молодой Тимано-Печорской платформой [11]. По [2] очаг землетрясения связан с подвижками блоков земной коры в нестабильной зоне одного из бортов Кировско-Кажимского авлакогена и имеет, несомненно, тектоническое происхождение. Названная сейсмическая зона относится к наиболее опасным в пределах Кировской области и Республики Коми, где по карте общего сейсмического районирования территории России ОСР-97-С [12] выделяются 6- и 7-балльные зоны (рис. 4). Исследуемое землетрясение с расчетным значением интенсивности сотрясений на уровне I_0 =5 баллов, попадая на границу изолиний шести и пяти баллов (рис. 4), очень хорошо вписывается в данную карту, не нарушая прогнозных значений интенсивности I ожидаемых сотрясений по действующей ныне карте ОСР.


Рис. 4. Фрагмент карты ОСР-97-С [12] с отмеченным эпицентром землетрясения 18 января 2000 г.

Факт возникновения землетрясения в этом районе не является уникальным. «Вятские» землетрясения уже неоднократно (табл. 3) проявлялись в доинструментальный период. Положение их эпицентров и зафиксированная интенсивность сотрясений изображены на рис. 5.

Отметим, что для землетрясения №2 (09.03.1809 г.) в [14, 15] при одинаковых значениях координат гипоцентра имеются различия в магнитудах. Предпочтение отдано данным Специализированного каталога [15], как уточненным. Для землетрясения №3 (25.08.1897 г.) отмечаются значительные расхождения в параметрах гипоцентра по разным источникам. В каталогах [14, 15] они одинаковые, но неуверенные (даны в скобках) и с большими погрешностями: ϕ =62.5±2.0°N, λ =55.0±2.0°E, h=15 κM с разбросом от 7 до 30 κM , M=5.3±0.7, I_0 =7. Поэтому в табл. 3 приведены параметры макросейсмического эпицентра, снятые с карт в [16, 17], как более предпочтительные.

Таблица 3. Список землетрясений в исследуемом районе за	. 1795–2000 гг.
--	-----------------

№	Дата,	Эпицентр		h, км	M	I_0 ,	Район	Источник	
	t_0	φ°, N	λ°, E	$\pm \delta h$	$\pm \delta M$	баллы			
		±δφ	$\pm\delta\lambda$			$\pm \delta I$			
1	(16-28).06.1795	58.87	50.82	4	2.0	4	Кировская область,	[13]	
		±0.1	± 0.1	2-5	±0.3		р. Б. Холуница		
2	09.03.1809	58.5	50.0	10	5	6±1	Окрестности г. Вятки	[14, 15]	
	23 30 ±1 <i>час</i>	± 0.5	± 0.5	±5	±0.5				
3	25.08.1897	59.0	50.10	10	5-5.2	7–8	Окрестности г. Вятки	[14–17]	
	13 00 ±1 <i>час</i>								
4	13.03.1908	58.85	51.5	7	3	4	г. Вятка и	[13]	
		±0.2	± 0.2	5-10	±0.3		пос. Слободской	[13]	
5	01.07.1908	57.7	54.5	10	3.0	5	с. Б. Сосновское	[15, 17, 18]	
	07 41 ±10 мин	± 0.5	± 0.5	±5	± 1.0	±1	(Оханского уезда, Пермь)	[13, 17, 10]	
6	13.05.1914	58.42	48.78	7	3	4	Нижнее течение	[13]	
		±0.2	± 0.2	(5-10)	±0.3		р. Вятки	[13]	
7	31.12.1938	59.85	52.8	10	3.2	4	Северо-восток Кировской	[13, 18]	
		±0.5	± 0.5	(8-16)	±0.5		области	[13, 16]	
8	18.01.2000	57.987	49.279	(10)	4.0	(5.5)	Юго-запад Кировской	табл. 2	
	04 05 43.0±0.5 c	± 0.05	± 0.04	±5	±0.5	±0.5	области	14011. 2	

Рис. 5. Положение исторических очагов в Вятском крае с 1795 г. и эпицентра землетрясения 18 января 2000 г.

1 – магнитуда; 2 – интенсивность сотрясений в баллах.

Таким образом, эпицентр исследуемого землетрясения 18.01.2000 года располагался на границе двух зон интенсивности сотрясений шести и пяти баллов по карте сейсмического районирования OCP-97-C (рис. 4). Это согласуется с полученными значениями балльности в эпицентре I_0 =5 по макросейсмическим данным.

Кроме того, анализ расположения эпицентров всех рассмотренных землетрясений Вятского края, как исторических, так и современного события 18.01.2000 года (рис.5), показывает их приуроченность к зоне, вытянутой в направлении с юго—запада на северо—восток. Это согласуется с ориентацией 6—ти и 7—ми балльных зон сотрясений на карте сейсмического районирования ОСР-97-С [12] (рис. 4) и с положением Кировско-Кажимского авлакогена [11].

Литература

- 1. **Никонов А.А.** Два недавних землетрясения в Вятском крае // Вестник Вятского государственного педагогического университета. 2004. № 11. С. 78–80.
- 2. Удоратин В.В., Югова Н.Н, Арихина В.И. Современные сейсмические процессы северо-востока Восточно-Европейской платформы // Строение, геодинамика и минерагенические процессы в лито-сфере (Материалы одиннадцатой Международной научной конференции, Сыктывкар, Республика Коми, Россия, 20–22 сентября 2005 г. Сыктывкар: ИГ Коми НЦ УрО РАН, 2005. С. 344–346.
- 3. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 4. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности (Тр. ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 5. Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- 6. Сейсмологический бюллетень (ежедекадный) за **2000** год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 2000–2001.
- 7. ISC, HEL, REB EIDC http://www.isc.ac.uk/Bulletin/rectang.htm
- 8. **Кириченко В.В., Краев Ю.А.** Использование подземных ядерных взрывов, проведенных на Семипалатинском испытательном полигоне, для сейсмической калибровки центральной части Северной Евразии // Геофизика и проблемы нераспространения. Вестник НЯЦ РК. Вып. 2. Курчатов: НЯЦ РК, 2002. С. 69–76.
- 9. **Bratt S.R., Bache T.C.** Locating events with a space network of regional arrays // Bull. Seism. Soc. Am. 1988. 78. P. 780–798.
- 10. **Феофилактов В.Д.** Калибровочная функция для расчета магнитуды по объемным волнам на расстояниях менее 20°. Обнинск: Фонды ГС РАН, 2005. 10 с.
- 11. **Щукин Ю.К..** Глубинное строение и динамика земной коры Восточно-Европейской платформы в связи с проблемой ее сейсмичности // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 143–150.
- 12. **Уломов В.И., Шумилина Л.С.** Комплект карт общего сейсмического районирования территории Российской Федерации ОСР-97. Масштаб 1: 8 000 000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоактивных районах. М.: ИФЗ РАН, 1999. 57 с.
- 13. **Никонов А.А., Мокрушина Н.Г., Лубягина Л.И.** Исторические землетрясения Вятского края // Вестник Вятского государственного педагогического университета. 2000. № 2. С. 76–78.
- 14. **Ананьин И.В.** (отв. сост). **XIV.** Европейская часть СССР, Урал и Западная Сибирь [1467–1974 гг.; $M \ge 3.0$; $I_0 \ge 4$] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 465–470.
- 15. **Specialized catalogue of Earthquakes for North Eurasia** / Eds. N.V. Kondorskaya, V.I. Ulomov. *http://www.scgis.ru* systems of data bases. М.: ОИФЗ РАН, 1996.
- 16. **Ананьин И.В.** К вопросу о проявлении некоторых землетрясений в восточной части Восточно-Европейской платформы // Исследования по сейсмической опасности (Вопросы инженерной сейсмологии, Вып. 29). – М.: Наука, 1988. – С. 119–124.
- 17. **Блинова Т.С.** Прогноз геодинамически неустойчивых зон. Екатеринбург: Горный институт УрО РАН, 2003. 146 с.
- 18. **Вейс-Ксенофонтова З.Г., Попов В.В.** К вопросу о сейсмической характеристике Урала. М.-Л.: АН СССР, 1940. 68 с.