Таджикистан

Т.Р. Улубиева¹, Р.С. Михайлова², Л.И. Рислинг¹

Институт сейсмостойкого строительства и сейсмологии, г. Душанбе, anton_ulubiev@mail.ru Геофизическая служба РАН, г. Обнинск, raisa@gsras.ru

В 1999 г. регистрацию землетрясений на территории Таджикистана осуществляли 20 сейсмических станций. Без пропусков работали одиннадцать: «Душанбе», «Джерино», «Гиссар», «Аккуйли», «Лангар», «Ура-тюбе», «Игрон», «Султанабад», «Богизагон», «Ленинабад» и «Гезан». С января 1999 г. возобновили свою работу сейсмические станции «Шаартуз», «Обигарм» и «Гарм», из которых в стабильном режиме работала только станция «Шаартуз». Станция «Гарм» проработала восемь месяцев (в июле и сентябре – по полмесяца), а с октября по декабрь материалы наблюдений отсутствовали. Станция «Обигарм» в первое полугодие работала с небольшими пропусками, во втором – данные с этой станции были только за сентябрь. Со станции «Кангурт» имеются сейсмограммы за апрель, «Арджинак» – август, сентябрь, «Офтобруй» – за второе полугодие. От четырех до пяти месяцев составили пропуски регистрации землетрясений на станциях «Рогун», «Больджуан» и «Джиргаталь». Уровень представительной регистрации землетрясений, по сравнению с таковым в 1998 г. [1], практически не изменился: на всей территории Таджикистана представительны землетрясения с $K_{min}=10$, за исключением самых окраинных северо- и юго-восточных частей, где уровень K_{min} повышается до $K_{min}=11$.

Границы исследуемой территории Таджикистана и прилегающих к нему районов Узбекистана, Кыргызстана, Афганистана и Китая изображены на рис. 1 вместе со схемой принятых в [1–3] крупных сейсмоактивных зон. Определение координат очагов землетрясений осуществлялось, по-прежнему, вручную. Для Душанбино-Вахшского района (φ =37°50′–39°00′ N, λ =68°00′–70°15′ E) использовались палетки изохрон с шагом по глубине 2.5 км, построенных на основе локального годографа [4]. На остальной части территории Таджикистана локализация коровых и глубоких землетрясений осуществлялась способом засечек. При определении координат очагов коровых землетрясений использовались осредненные годографы [5]. При этом глубина очага находилась с шагом 5 км при первых 10 км, а далее с шагом 10 км. Для определения координат глубокофокусных землетрясений ($h \ge 70 \kappa M$) применялся годографа [6] с шагом по глубине 10 км. Энергетическая классификация землетрясений проведена по номограмме Т.Г. Раутиан с использованием зависимости суммы максимальных амплитуд (A_P + A_S) от эпицентрального расстояния для землетрясений с очагом в земной коре [7, 8] и от гипоцентрального расстояния – для глубокофокусных землетрясений Памиро-Гиндукуша [9].

В результате сводной обработки составлен каталог землетрясений Таджикистана и прилегающих к нему районов [11], дополненный некоторыми событиями (N=37) из каталога землетрясений Центральной Азии [12] и международных бюллетеней агентств MOS [13], ISC [14] (N=14). По итоговым данным [15], на изучаемой территории локализовано 1851 землетрясение с $K_P=8.0-15.1$, из них 1124 – глубокофокусные Памиро-Гиндукушские и 727 – мелкофокусные землетрясения. При этом необходимо было на новом массиве данных оценить различия в оценках величины землетрясения с использованием энергетических классов Таджикистана и Центральной Азии.

Из сопоставления двух каталогов [11, 12] выявлено, что число землетрясений, локализованных одновременно указанными сетями, составило 105. Информация об их энергетических классах представлена на рис. 2, 3 в обычном виде поля корреляции $K_{tad}=f(K_{kyr})$ и в виде разностной функции – $K_{tad} - K_{kyr}=f(K_{kyr})$. Получены два уравнения:

$$K_{\text{tad}} = 1.61 + 0.89 K_{\text{kyr}},$$
 (1)

$$K_{\text{tad}} - K_{\text{kyr}} = 1.49 - 0.1 K_{\text{kyr}}.$$
 (2)

Причина завышения значений энергетических классов по записям станций Таджикистана пока не ясна. Тем не менее полученный результат был учтен при отборе землетрясений Таджикистана в каталог сильных землетрясений Евразии [16].

Рис. 1. Сейсмоактивные зоны Таджикистана и глубинные разломы

I–IV – сейсмоактивные зоны: Юго-Западный Тянь-Шань, Южный Тянь-Шань, Памиро-Гиндукуш (коровые), Памиро-Гиндукуш (глубокие) соответственно; 5 – глубинный разлом и его номер.

Главнейшие глубинные разломы территории Таджикистана и Северного Афганистана по [10]: 1 – Северо-Ферганский; 2 – Заамин-Хайдараканский (Южно-Ферганский); 3 – Южно-Гиссарский; 4 – Илякско-Вахшский; 5 – Дарваз-Заалайский; 5 – Афгано-Северо-Памирский; 6 – Ванч-Акбайтальский; 7 – Каракульско-Сарезский; 8 – Бартанг-Пшартский; 8 – Рушано-Северо-Пшартский; 9, 10 – Афгано-Южно-Памирские; 11 – Альбурз-Мормульский; 12 – Андараб-Мирзавалангский.

Рис. 2. График зависимости энергетических классов, определенных в Таджикистане (*K*_{tad}) и в Киргизии (*K*_{kyr})

Рис. 3. Величина ступени ($K_{tad}-K_{kyr}$) при разных значениях K_{kyr}

Расчет значений K_P по m_b для землетрясений коровых ($h=0-69 \ \kappa m$) и глубоких ($h\geq 70 \ \kappa m$), добавленных из [14], проведен по уравнениям их связи, полученным ранее в [2] по материалам наблюдений за 1993–1996 гг.:

$K_{\rm P}$ =3.31 + 1.89 $m_{\rm b}$	при <i>h</i> <70 <i>км</i> ,	(3)
$K_{\rm P}$ =1.57 + 2.31 $m_{\rm b}$	при <i>h</i> ≥70 <i>км</i> .	(4)

Распределение всех землетрясений по крупным сейсмоактивным зонам I–IV (рис. 1) дано в табл. 2. Величина высвободившейся сейсмической энергии в очагах всех землетрясений равна $\Sigma E=1.19 \cdot 10^{15} \ Дж$, что более чем на порядок ниже таковой в 1998 г. ($\Sigma E=14.0 \cdot 10^{15} \ Дж$ [1]).

Таблица 2. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по зонам

N⁰	Зона					N_{Σ}	$\Sigma E \cdot 10^{15}$,				
		8	9	10	11	12	13	14	15		Дж
Ι	Юго-Западный Тянь-Шань	_	25	2	3	-	-	-	_	30	0.0003
II	Южный Тянь-Шань	5	120	44	15	4	1	-	_	189	0.0177
III	Памиро-Гиндукуш (коровые)	16	204	146	53	20	6	-	_	445	0.0087
IV	Памиро-Гиндукуш (глубокие)	10	644	332	110	19	3	1	1	1120	1.1640
	Всего	31	993	524	181	43	10	1	1	1784	1.1907

Распределение землетрясений по глубине представлено отдельно для очагов в земной коре на всей территории (табл. 3) и глубокофокусных – для Памиро-Гиндукуша (табл. 4), из которых следует, что глубины $h=0-10 \ \kappa m$ имели лишь 79% коровых толчков, вместо 92% в 1998 г. Глубокие землетрясения более стабильны: в одном и том же интервале глубин $h=70-210 \ \kappa m$ в 1999 г. отмечено 96% всех толчков, что близко к аналогичной оценке за 1998 г. (94%). Самое глубокое землетрясение с $h=270 \ \kappa m$ произошло 4 февраля в 23^h38^m с $K_p=9.5$ в Хорогской подзоне IV-й зоны, так же, как и в 1998 г. [1].

Таблица 3. Сравнение распределения землетрясений Таджикистана по глубине в пределах земной коры за 1998–1999 гг.

h,	1998 г.		1999 г.		r. 1999		<i>h</i> ,	199	98 г.	199	99 г.
КМ	N	%	N	%	КМ	N	%	Ν	%		
0-5	123	7.81	68	9.38	41-50	4	0.25	2	0.28		
6-10	1313	83.37	507	69.93	51-60	6	0.38	10	1.38		
11-20	49	3.11	42	5.79	не опред.	15	0.95	28	3.86		
21-30	54	3.43	68	9.38							
31–40	11	0.70	—	_	Всего	1575	100%	725	100%		

Таблица 4. Сравнение распределения глубокофокусных Памиро-Гиндукушских землетрясений по глубине за 1998–1999 гг.

h,	199	8 г.	1999 г.		<i>h</i> ,	199	98 г.	199	99 г.
КМ	N	%	Ν	%	КМ	N	%	N	%
70	10	0.72	13	1.14	180	183	13.12	173	15.40
80	250	17.92	158	14.07	190	46	3.30	44	3.90
90	12	0.86	3	0.27	200	189	13.54	134	11.93
100	56	4.02	81	7.21	210	74	5.31	27	2.40
110	6	0.42	5	0.44	220	33	2.36	12	1.05
120	10	0.72	16	1.42	230	31	2.22	19	1.69
130	100	7.17	90	8.01	240	9	0.64	6	0.53
140	41	2.94	38	3.38	250	10	0.72	5	0.44
150	166	11.91	147	13.08	260	_		_	
160	99	7.10	57	5.07	270	1	0.07	1	0.08
170	76	5.45	100	8.90	Всего	1394	100%	1123	100%

Сейсмичность исследуемой территории представлена на трех годовых картах эпицентров: сильных землетрясений ($K_P \ge 12$) для всех глубин очагов $h=0-270 \ \kappa m$ (рис. 4), коровых с $K_P \ge 9$, $h < 70 \ \kappa m$ (рис. 5) и глубоких с $K_P \ge 9$, $h \ge 70 \ \kappa m$ (рис. 6). Наиболее значительные события отмечены в Гиндукуше на территории Афганистана 29 июня в $23^{h}18^{m}$ с $K_P=14.0$ и 8 ноября в $16^{h}45^{m}$ с $K_P=15.1$. Глубины их гипоцентров равны 200 κm . Они ощущались почти на всей территории Таджикистана с интенсивностью от 4 до 5 баллов [15]. Рассмотрим более детально проявления сейсмичности в пределах земной коры на всей территории Республики с прилегающими к ней районами (зоны I–III) и в Памиро-Гиндукушской зоне (IV) глубоких землетрясений.

Рис. 4. Эпицентры сильных (К_Р≥11.6) землетрясений Таджикистана за 1999 г.

1 – энергетический класс K_P ; 2 – глубина h гипоцентра, κ_M ; 3 – сейсмическая станция. Названия и коды сейсмических станций на рис. 4–6: 1 – «Душанбе» (Dsh); 2 – «Обигарм» (Obg); 3 – «Гарм» (Gar); 4 – «Джиргаталь» (Dzt); 5 – «Гиссар» (Gis); 6 – «Больджуан» (Bld); 7 – «Лангар» (Lna); 8 – «Джерино» (Dze); 9 – «Богизагон» (Bgg); 10 – «Аккуйли» (Akl); 11 – «Ура-Тюбе» (Urt); 12 – «Шаартуз» (Sht); 13 – «Рогун» (Rgn); 14 – «Игрон» (Igr); 15 – «Кангурт» (Kng); 16 – «Гезан» (Gzn); 17 – «Арджинак» (Ard); 18 – «Ленинабад» (Lnb); 19 – «Офтобруй» (Oht); 20 – «Султанабад» (Slt).

Рис. 5. Карта эпицентров коровых (*h*≤69 *км*) землетрясений Таджикистана за 1999 г. 1 – энергетический класс *K*_P; 2 – сейсмическая станция.

Рис. 6. Карта эпицентров глубоких (*h*≥70 км) землетрясений Таджикистана за 1999 г.

1 – энергетический класс *K*_P; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция.

На территории **Юго-Западного Тянь-Шаня** (I), в Согдийской области, зарегистрированы только толчки с K_P =9–11. Общее число землетрясений уменьшилось вдвое, по сравнению с таковым в 1998 г. Сейсмическая активность этой зоны наименьшая. Вблизи Северо-Ферганского разлома (рис. 1) локализовано землетрясение с K_P =10.6 (рис. 5), произошедшее 18 октября в 16^h13^m [15].

Отметим, однако, на рис. 5 восемь землетрясений с $K_P \ge 10.6$ (табл. 5) в приграничной полосе с Южно-Тяньшаньской зоной (II), линейно вытянутых частично вдоль Южно-Ферганского глубинного разлома (рис. 1). Четыре из них были ощутимы: в Намангане (1 августа с $K_P = 11.1$, I=4 балла), в Фергане (29 июля с $K_P = 11.7$, I=4-5 баллов), в Ленинабаде (27 июня с $K_P = 11.0$, I=4 балла), в Айни (19 августа с $K_P = 11.4$, I=4 балла) и в других пунктах [15].

N₂	Дата,	<i>t</i> ₀ ,	Епицентр		h,	$K_{ m P}$	N⁰	Дата,	$t_0,$	Епин	ентр	h,	$K_{ m P}$
	д м	ч мин с	φ°, Ν	λ°, Ε	км			д м	ч мин с	φ°, N	λ°, Ε	км	
1	17.02	21 40 23	40.1	72.6	10	10.9	5	27.06	12 25 51	40.1	69.9	5	11.0
2	15.07	22 47 36	40.4	71.7	10	11.1	6	19.08	20 46 57	39.5	69.2	20	11.4
3	01.08	15 28 06	40.5	71.4	10	11.1	7	02.09	12 11 28	39.2	67.9	10	10.6
4	29.07	08 35 15	40.1	71.3	10	11.7	8	12.03	12 48 24	39.3	66.9	10	10.7

Таблица 5. Список землетрясений с *К*_Р≥10.6 на границе Юго-Западного (I) и Южного Тянь-Шаня (II), приведенных в порядке их расположения с востока на запад

В западной своей части эта полоса эпицентров отклоняется на юг, стыкуясь с очаговой зоной достаточно сильного землетрясения 31 октября в Узбекистане в 60 км к юго-востоку от г. Карши на глубине 10 км с K_P =13.3, до которого «дотянулась» обработка, зарегистрировав частично и его афтершоки (табл. 6). Отметим также дальний по времени (12 марта в 12^h48^m) форшок с K_P =10.7, который можно с некоторой определенностью отнести к западному краю описанной выше цепочки эпицентров (рис. 5). Максимальный афтершок реализовался 25 декабря в 13^h28^m с K_P =12.3. Движение в очаге главного толчка произошло под действием сжимающих напряжений, ориентированных в широтном направлении. Нодальная плоскость *NP*1 имеет северо-восточное простирание, плоскость *NP*2 – северо-западное. Обе плоскости имеют крутое падение. Тип движения по обеим плоскостям – взброс с элементами сдвига правостороннего по *NP*1 и левостороннего – по *NP*2. В очаге максимального афтершока превалирующие напряжения сжатия ориентированы в юго-восточном направлении. Обе нодальные плоскость имеют северо-восточное простирание, но падают под разными углами. Плоскость

*NP*1 имеет более пологое залегание, по сравнению с плоскостью *NP*2. Тип подвижки по плоскости *NP*1 представлен взбросом с присутствием компоненты левостороннего сдвига, по более пологой плоскости *NP*2 – надвиг (рис. 7, [17]).

Рис. 7. Механизмы очагов землетрясений Таджикистана за 1999 г. с очагом в земной коре

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

20 января в 22^h09^m в зоне **II**, в 130 км к юго-западу от г. Душанбе, произошло ощутимое Кабодиёнское землетрясение с $I_0=5-6$ баллов. Движение в его очаге произошло под действием близгоризонтальных напряжений сжатия, ориентированных в субширотном направлении. Обе нодальные плоскости имеют близмеридиональное простирание (рис. 7), но разное падение – $DP=71^{\circ}$ и 20°. Подвижка по крутой плоскости – чистый взброс, по пологой – чистый надвиг [17]. Землетрясение обследовано, ему посвящена отдельная статья [18] в наст. сб.

N⁰	Дата,	$t_0,$	Эпицентр	<i>h</i> ,	MS .	MPSP	K _P	N⁰	Дата,	$t_0,$	Эпиг	центр	h,	MS	MPSP	K _P
	д м	ч мин с	φ°, N λ°, Ε	км					д м	ч мин с	φ°, Ν	λ° , Ε	км			
			Форшок				7	02.11	02 40 10	38.9	66.4	10			9.5	
1	12.03	12 48 24	393 669	10			107	8	02.11	14 39 18	38.9	66.4	10			9.6
	12.00	0.00			I		10.7	9	02.11	20 37 46	38.9	66.4	10			9.4
	,	Осно	овнои толчо	ж				10	03.11	15 27 30	38.9	66.5	10			9.5
-	31.10	17 09 07	38.6 66.4	10	4.5	5.5	13.3	11	04.11	12 26 23	38.9	66.5	10			9.8
		A	фтершоки					12	10.11	17 34 22	38.9	66.5	10			10.6
1	31.10	20 39 44	38.9 66.5	10			9.2	13	10.11	21 52 17	38.9	66.5	10			10.1
2	01.11	03 18 22	38.9 66.4	10			9.5	14	11.11	10 21 54	38.5	66.4	10		4.5	11.5
3	01.11	10 29 19	38.9 66.4	10			9.5	15	25.12	13 28 08	38.6	66.4	10		5.2	12.3
4	01.11	14 05 30	38.9 66.4	10			10.5	16	25.12	17 28 49	38.6	66.5	10			9.7
5	01.11	16 00 23	38.9 66.5	10			8.8	17	26.12	00 20 02	38.8	66.5	10			9.9
6	01.11	17 29 00	38.9 66.4	10			10.1	18	27.12	00 21 46	38.7	66.5	10			9.5
								19	31.12	02 42 54	38.8	66.5	10			9.5

Таблица 6. Основные параметры форшока, главного толчка и афтершоков землетрясения 31 октября по [15]

Активной сейсмичностью в зоне II характеризуется территория Душанбино-Вахшского района. Здесь зарегистрировано 12 землетрясений с K_P =9–12. Сильное землетрясение (K_P =12.3) произошло в южной части Гиссарской долины 27 марта в 10^h20^m, названное Гиссаро-Бабатагским и описанное в отдельной ст. [19] наст. сб. Интенсивность в эпицентре составила 6–7 баллов. Это землетрясение имело один ощутимый форшок с K_P =10.6, который произошел в 13^h40^m, т.е. за два часа до основного толчка.

В Памиро-Гиндукушской зоне (III) коровых землетрясений в очаговой зоне разрушительного землетрясения 30.05.1998 г. с *M*=6.7 [1] в 240 км юго-восточнее Душанбе продолжались афтершоки и в 1999 г. Афтершоки 20, 26 марта и 1 июня 1999 г. ощущались в Душанбе с *I*=2–3 балла [15]. Суммарное число всех афтершоков составило 1004, в том числе 118 – за 1999 г. Такая растянутость во времени моментов возникновения достаточно сильных и немалое число более слабых афтершоков говорит о том, что процессы последействия названных событий 1998 г. еще далеки от завершения.

Особенностью года является «оживление» сейсмической активности на юге Памира (рис. 5) в виде роя из 67 землетрясений с $K_P \ge 8.6$ (табл. 7), локализованных вблизи двух Афгано-Южно-Памирских разломов (9 и 10 на рис. 1), примерно в 100 км южнее известного Сарезского озера, образовавшегося после сильного землетрясения 1911 г. [21] с М=7.4 [22]. Наибольшей энергией характеризуются три толчка с K_P÷13 (29 июня в 08^h03^m с K_P=13.0, 8 июля в 16^h42^m с K_P =12.9 и 18 июля в 21^h51^m с K_P =12.6), столько же землетрясений имели K_P ÷12 (29 июня в 10^h14^m с K_P =11.8, 10 июля в 22^h15^m с K_P =11.6 и 15 июля в 21^h46^m с K_P =12.4). Землетрясений с *K*_P÷11 отмечено тринадцать (табл. 7), первые два из которых реализовались за 47 и 17 минут до максимального толчка 29 июня с K_P=13.0, вызвавшего сотрясения с I=5-6 баллов у оз. Сарез [15]. Для землетрясениий 29 июня и 8 июля есть решения механизмов очагов. Землетрясение 29 июня возникло в условиях напряжений растяжения, ориентированных в юговосточном направлении. Обе нодальные плоскости имеют практически равные углы падения. Простирания нодальных плоскостей также близки – обе вытянуты в северо-восточном направлении. Тип движения по ним представлен сбросом. В очаге землетрясения 8 июля движение произошло под действием близких по величине напряжений растяжения (ориентированного в близширотном направлении) и сжатия (ориентированного в меридиональном направлении). Обе нодальные плоскости имеют крутое падение, одна из них – NP1 простирается с северовостока на юго-запад, вторая – NP2 – с северо-запада на юго-восток. Подвижка по NP1 представлена левосторонним сдвигом, по *NP2* – правосторонним [17].

		i i i i i i i i i i i i i i i i i i i								1	1						
№	Дата,	t_0	Эпиг	центр	h_{2}	MS	MPSP	$K_{\rm P}$	No	Дата,	t_0 ,	Эпиг	центр	h_{2}	MS	MPSP	$K_{\rm P}$
	дм	ч мин с	φ°, N	λ°, E	км			•		дм	ч мин с	φ°, N	λ°, E	км			•
1	23.06	23 57 27	37.3	72.6	10			9.7	34	12.07	20 24 22	37.0	72.4	10			10.2
2	29.06	07 16 39	37.4	72.8	10			11.2	35	12.07	20 30 05	37.1	72.5	10			10.4
3	29.06	07 49 45	37.2	72.6	10		4.5	11.1	36	13.07	05 24 43	37.1	72.5	10			10.2
4	29.06	08 03 55	37.4	72.8	10	4.7	5.2	13.0	37	13.07	06 43 05	37.0	72.5	10			10.2
5	29.06	09 01 44	37.2	72.6	10			10.0	38	13.07	07 28 43	37.0	72.5	10			9.4
6	29.06	09 16 05	37.1	72.9	10			8.7	39	14.07	06 15 48	37.0	72.5	10			9.7
7	29.06	09 20 22	37.1	72.9	10			9.7	40	15.07	20 37 07	37.0	72.5	10			10.3
8	29.06	09 35 05	37.1	72.9	10			9.0	41	15.07	20 41 45	37.1	72.6	10			9.4
9	29.06	09 57 23	37.1	72.9	10			10.5	42	15.07	21 46 58	37.0	72.6	10	4.3	4.7	12.4
10	29.06	10 14 05	37.1	72.9	10	3.8	4.5	11.8	43	15.07	22 07 51	37.1	72.5	10			10.2
11	29.06	12 04 37	37.3	72.7	10			9.8	44	15.07	23 50 45	37.0	72.5	10			10.3
12	29.06	19 43 39	37.3	72.9	10			9.7	45	16.07	06 22 24	37.0	72.5	10			10.7
13	30.06	02 40 13	37.2	73.0	10			11.1	46	17.07	12 45 31	37.0	72.5	10		4.3	11.2
14	08.07	16 42 03	37.0	72.6	10		4.8	12.9	47	18.07	21 51 43	37.0	72.5	10	4.1	5.0	12.6
15	08.07	17 05 03	37.1	72.4	10			10.3	48	19.07	04 33 46	37.1	72.4	10			10.4
16	08.07	17 53 18	37.0	72.5	10			9.3	49	19.07	15 53 02	37.1	72.5	10			9.4
17	08.07	19 28 46	37.0	72.5	10			9.5	50	22.07	16 32 03	37.1	72.3	10			9.7
18	08.07	19 43 09	37.0	72.5	10			9.8	51	23.07	14 28 21	37.1	72.4	10			10.8
19	08.07	20 47 35	37.0	72.5	10			11.0	52	24.07	19 36 44	37.1	72.5	10			10.4
20	08.07	22 47 37	37.0	72.3	10			10.2	53	25.07	10 39 33	37.1	72.5	10			10.1
21	08.07	23 43 06	37.0	72.3	10			9.7	54	29.07	18 16 17	37.1	72.5	10			10.0
22	09.07	02 35 32	36.9	72.2	10			10.1	55	31.07	18 28 55	37.1	72.0	10			9.7
23	09.07	02 48 28	37.0	72.4	10			9.8	56	04.08	21 21 00	37.0	72.6	10		4.5	11.2
24	09.07	03 17 14	36.9	72.3	10			9.7	57	07.08	23 57 51	37.1	72.5	10			10.1
25	09.07	04 16 52	37.0	72.3	10			9.4	58	10.08	17 31 12	37.1	72.5	10			9.1
26	09.07	20 01 29	37.0	72.5	10			10.1	59	13.08	18 49 43	37.1	72.4	10			11.2
27	09.07	20 23 04	37.0	72.6	10			9.5	60	14.08	14 19 08	37.1	72.6	10			10.6
28	10.07	07 10 58	37.0	72.5	10			11.1	61	14.08	19 15 19	37.1	72.5	10			9.3
29	10.07	07 26 22	37.0	72.3	10			9.6	62	05.09	00 41 57	37.2	72.5	10			10.7
30	10.07	21 25 08	37.0	72.5	10			10.0	63	08.09	00 24 10	37.0	72.7	10			10.8
31	10.07	22 15 16	37.0	72.5	10		4.2	11.6	64	27.11	09 33 12	37.1	72.3	10			10.3
32	11.07	04 48 14	37.0	72.5	10			9.3	65	29.11	054137	37.1	72.3	10			10.5
33	12.07	19 44 42	37.1	72.5	10			9.4									

Таблица 7. Рой землетрясений на юге Памира в 1999 г.

Решение механизма очага имеется еще для трех землетрясений на юге **зоны III** (рис. 7): 9 мая в $21^{h}38^{m}$ с $K_{P}=13.2$ ($\phi=36.9^{\circ}$ N, $\lambda=73.1^{\circ}$ E), 1 июня в $12^{h}49^{m}$ с $K_{P}=12.1$ ($\phi=36.9^{\circ}$ N, $\lambda=70.4^{\circ}$ E), 3 августа в $12^{h}02^{m}$ с $K_{P}=12.0$ ($\phi=36.4^{\circ}$ N, $\lambda=69.1^{\circ}$ E) [15, 17]. Первое из них возникло под действием преобладания напряжения сжатия, ориентированного в северо-западном направлении. Для обеих нодальных плоскостей отмечается крутое падение, плоскость *NP1* имеет близмеридиональное простирание, плоскость *NP2* – северо-восточное. Тип движения по обеим плоскостям – взброс с компонентами сдвига (по *NP1* – левостороннего, по *NP2* – правостороннего). Второе землетрясение возникло в условиях превалирования по величине напряжений растяжения, ориентированных в северо-западном направлении. Одна нодальная плоскость (*NP1*) имеет субмеридиональное простирание и более пологое залегание, плоскость (*NP2*) имеет северо-восточное простирание и крутое падение; подвижка по первой плоскости – правосторонний сдвиг, по второй – сброс с компонентами левостороннего сдвига. Третье землетрясение характеризуется превалирующими напряжениями сжатия близмеридионального простирания, под действием которого по обеим нодальным плоскостям произошли взбросовые подвижки с компонентами сдвига.

Основная часть глубокофокусных землетрясений в **Памиро-Гиндукушской зоне (IV)** располагалась за пределами Республики, на территории Афганистана (рис. 6). Традиционно эта зона подразделяется по плотности эпицентров на три подзоны: Афганскую, Хорогскую и Мургабскую. Распределение сильных ($K_P \ge 11.6$) землетрясений по подзонам дано в табл. 8.

Подзона		ŀ	P		N_{Σ}	$\Sigma E \cdot 10^{15}$,
	12	13	14	15		Дж
Афганская	13	3	1	1	18	1.143
Хорогская	4	_	—	—	4	0.004
Мургабская	2	—	_	—	2	0.004
Всего	19	3	1	1	24	1.151

Таблица 8. Распределение сильных (*К*_P≥11.6) глубоких землетрясений по энергетическим классам в трех подзонах

Из табл. 8 следует, что все пять землетрясений с K_P =13–15 произошли в Афганской подзоне. Они были зарегистрированы 9 февраля в 17^h33^m с K_P =13.3, 10 июня в 15^h07^m с K_P =12.7, 21 июня в 17^h37^m с K_P =12.9, 29 июня в 23^h18^m с K_P =14.0, 8 ноября в 16^h45^m с K_P =15.1. В целом количество выделившейся энергии этой зоны осталось почти на том же уровне, что и в 1998 г. [1]. Для всех перечисленных землетрясений имеются решения механизмов очагов (рис. 8, [17]).

Рис. 8. Механизмы очагов глубоких землетрясений Памиро-Гиндукуша за 1999 г.

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Землетрясение 9 февраля произошло под действием близких по величине напряжений растяжения, ориентированных в субширотном направлении, и сжатия, ориентированных в субмеридиональном направлении. Обе нодальные плоскости имеют крутое падение, одна из них

(*NP*1) простирается с северо-запада на юго-восток, вторая (*NP*2) с северо-востока на юго-запад. Подвижки по обеим плоскостям представлены сдвигами: по *NP*1 – левосторонним, по *NP*2 – правосторонним. Механизмы очагов глубоких землетрясений 10 июня, 21 июня и 29 июня подобны. Они произошли под действием сжимающих напряжений. Для землетрясения 10 июня ось сжатия *P* направлена на северо-запад, для двух других – на юг. Различие состоит в ориентации нодальных плоскостей – для землетрясения 10 июня обе плоскости имеют северовосточное простирание, для землетрясений 21 июня и 29 июня они ориентированы близширотно. По всем нодальным плоскостям произошли взбросовые подвижки.

Землетрясение 8 ноября с K_P =15.1 – максимальное во всей зоне IV и имеет глубину 200 км по [15] и 226 км по фазе *pP* в [14]. Расчетная интенсивность сотрясений в его эпицентре – 6 баллов, в Душанбе оно ощущалось с *I*=5–6 баллов. Колебания с *I* от трех до пяти баллов распространились почти на всю территорию Таджикистана. Это землетрясение произошло под действием превалирующего напряжения сжатия (ориентированного в юго-восточном направлении). Обе нодальные плоскости простираются в северо-восточном направлении, тип движения по обеим плоскостям – взброс. Механизм его очага подобен таковым, приведенным выше.

В Хорогской подзоне количество выделившейся энергии, по сравнению с таковой в 1998 г., уменьшилась в четыре раза. Здесь не зарегистрировано ни одного толчка с *K*_P≥13.

В Мургабской подзоне, по сравнению с прошлым периодом, отсутствуют толчки с K_P =13, а количество толчков с K_P =12 осталось прежним. Для одного из них, произошедшего 10 декабря в 02^h11^m на глубине 116 км (по фазе *pP* [14]), имеется решение механизма очага (рис. 8), согласно которому в его очаге превалировали напряжения сжатия юго-восточного направления. Обе нодальные плоскости крутые, плоскость *NP*1 ориентирована в северовосточном направлении, *NP*2 – близширотно. Подвижки по обеим плоскостям представлены взбросами с компонентами левостороннего сдвига по *NP*1 и правостороннего – по *NP*2.

Литература

- 1. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии в 1998 году. Обнинск: ФОП, 2004. С. 91–104.
- 2. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии в 1996 году. М.: ОИФЗ РАН, 2002. С. 60–66.
- 3. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии в 1997 году. Обнинск: ФОП, 2003. С. 77–84.
- 4. **Кулагин В.К.** Строение земной коры Вахшского района Таджикской ССР по сейсмическим данным. Канд. дис. Иркутск: Фонды Иркутского государственного университета, 1970. 150 с.
- 5. Кулагина М.В., Шакиржанова Г.Н., Рябовалова О.Т. Результаты опробования годографов для определения координат гипоцентров мелкофокусных землетрясений Таджикистана // Землетрясения Средней Азии и Казахстана в 1984 году. – Душанбе: Дониш, 1988. – С. 99–133.
- 6. Лукк А.А., Нерсесов И.Л. Глубокие Памиро-Гиндукушские землетрясения // Землетрясения в СССР в 1966 году. М.: Наука, 1970. С. 118–136.
- 7. Раутиан Т.Г. Энергия землетрясения // Методы детального изучения сейсмичности (Тр. ИФЗ АН СССР; № 9(176)). М.: АН СССР, 1960. С. 75–114.
- 8. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 9. Каток А.П. Об использовании номограммы Раутиан для энергетической классификации глубоких Памиро-Гиндукушских землетрясений // Магнитуда и энергетическая классификация землетрясений. Т. II. – М.: ИФЗ АН СССР, 1974. – С. 139–143.
- 10. Ачилов Г.Ш., Бабаев А.М., Мирзоев К.М., Михайлова Р.С. Сейсмогенные зоны Памира // Геология и геофизика Таджикистана.– Душанбе: Дониш, 1985. С. 117–138.
- 11. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Давлятова Р., Хусейнова Г.А., Улубиев А.Н., Максименко Т.И. Каталог (оригинал) землетрясений Таджикистана за 1998 г. с *К*_Р≥8.6. – Обнинск: Фонды ГС РАН, 2004. – 50 с.

- 12. Джанузаков К.Д. (по региону), Соколова Н.П. (Кыргызстан), Калмыкова Н.А. (Казахстан), Гиязова Ш.Ш. (Узбекистан), Сопиева К., Жунусова Ж., Айбашева К., Шипулина С.А., Умурзакова Р.А., Проскурина Л.П., Ульянина И .А., Каймачникова Н.И., Гайшук Л.Н., Тулегенова М.К., Абдыкадыров А.А. Центральная Азия. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 13. Сейсмологический бюллетень (ежедекадный) за 1999 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1999–2000.
- 14. Bulletin of the International Seismological Centre for 1999. Berkshire: ISC, 2001.
- 15. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Давлятова Р., Хусейнова Г.А., Михайлова Р.С., Улубиев А.Н., Максименко Т.И. Таджикистан. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 16. Михайлова Р.С. (отв. сост.). Северная Евразия. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 17. Чепкунас Л.С., Михайлова Р.С. (сост.). Таджикистан. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- 18. Джураев Р.У., Олимов Б.К. Кабодиёнское землетрясение 20 января 1999 года с *Мw*=5.0, *I*₀=5-6 (Таджикистан). (См. раздел II (Макросейсмические обследования) в наст сб.).
- 19. Джураев Р.У., Олимов Б.К. Гиссаро-Бабатагское-II землетрясение 27 марта 1999 года с *K*_P=12.3, *I*₀=6-7 (Таджикистан). (См. раздел II (Макросейсмические обследования) в наст сб.).
- 20. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Давлятова Р., Хусейнова Г.А., Михайлова Р.С., Улубиева А.Н., Максименко Т.И. Таджикистан // Землетрясения Северной Евразии в 1998 году. Обнинск: ФОП, 2004. (На СD).
- 21. Голицын Б.Б. О землетрясении 18 февраля 1911 г. // Известия Российской АН. 1915. Т. 9. № 10. С. 15–18.
- 22. Михайлова Р.С., Каток А.П., Матасова Л.М., Джанузаков Л.М., Сыдыков А. (отв. сост.). III. Средняя Азия и Казахстан [300 до н.э. 1974 гг., *M*≥5.0, *MPSP*≥5.6, *MPVA*≥5.3; *I*₀≥6.0] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 198–296.