ФОРОССКОЕ ЗЕМЛЕТРЯСЕНИЕ 18 октября 1998 года,

 $c Mc = 4.3, I_0 = 5 (Крым)$

Б.Г. Пустовитенко

Тектоническая позиция очаговой зоны. Форосское землетрясение с K_{Π} =12.0 произошло 18 октября в $05^{\rm h}22^{\rm m}$ в акватории Черного моря, в крупной сейсмогенной структуре Крымского региона — в узле пересечения сейсмоактивных глубинных разломов Одесско-Синопского и Южно-Бережного [1, 2], в зоне резкого градиента изобат континентального склона (рис. 1), где за период инструментальных наблюдений с 1927 г. землетрясений с K_{Π} ≥ 12.0 не было. До сих пор максимальным здесь было землетрясение 30.10.1986 г. (t_0 =06 $^{\rm h}37^{\rm m}$, K_{Π} =11.4, Mw=4.3 [3]) с эпицентром в 25 км южнее, сотрясения от которого с I=2–3 балла наблюдались только в г. Ялта [4]. Однако на этом же разломе, но в пересечении с Предгорным разломом, отмечено землетрясение более сильное, с MLH=5.5, произошедшее 18.03.1957 г. (t_0 =23 $^{\rm h}17^{\rm m}$, I_0 =6–7 баллов [4], Mc=5.3 [5], Mw=5.5 [6]) в 70 км севернее Форосского землетрясения. Событие 18.03.1957 г. ощущалось в Севастополе и Инкермане с интенсивностью 4–5 баллов [4].

Рис. 1. Тектоническая позиция очаговой зоны Форосского землетрясения 18 октября с K_{Π} =12.0

1, 2 – глубинные разломы: Од-С— Одесско-Синопский, Ю-Б – Южнобережный, П — Предгорный [1]; 3 – изобата континентального склона; 4 – изолиния глубины залегания поверхностей Мохо [1]; 5 – зона афтершоков; 6 – зона форшоков; 7 – эпицентр главного толчка; 8 – эпицентры двух предшествующих сильнейших землетрясений последних 50 лет: 18.03.1957 г. (1) и 30.10.1986 г. (2).

Процессы подготовки землетрясения. Зона, где произошло Форосское землетрясение, длительное время находилась в сейсмическом покое, но с 1995 г. она была объявлена как наиболее опасная на ближайшие годы [7].

Среднесрочный прогноз был сделан по методике локализации мест возможной реализации сильных землетрясений, основанной на свойствах пространственно-временного группирования эпицентров слабых толчков [8]. Была выделена прогнозная область в юго-западной части региона с координатами ϕ =44.00°-44.15° N, λ =33.30°-33.60° E, для которой сообщалось,

что «в выделенной активной зоне в ближайшие годы возможна реализация землетрясения с магнитудой M=5.2±0.5» [7, с. 58, 65]. Анализ временных рядов других сейсмологических параметров (сброшенного напряжения $\Delta \sigma$, сейсмического момента M_0 , отношений амплитуд поперечных и продольных волн A_S/A_P , среднеинтервальной энергии ΣE_n и т.д.) «выявил тенденцию к их аномальному ходу» [7, с. 67]. На рис. 2 приведена схема из [7]. На этой схеме нанесены параметры графиков $R_i(t)$, где R_{\min} — минимальное расстояние между последовательно происходящими слабыми толчками и точкой сканирования (условным эпицентром предполагаемого землетрясения), а DR — максимальная «амплитуда» графика $R_i(t)$, после которой начинается спад R_i — происходит эффект стягивания эпицентров в зону будущего толчка. Ретроспективно рассмотрены также другие признаки подготовки этого землетрясения, кроме установленных в работе [7].

Puc. 2. Карта-схема локализации опасной зоны (штриховка) Крымского региона [7, с. 59]

Проведен анализ изменения концентрационного критерия сейсмогенных разрывов $K_{\rm kp}$ [9], который рассчитывался по формуле:

$$K_{\kappa p} = \frac{N^{-1/3}}{L},$$

где N — число землетрясений в единице объема; L — средняя длина разрывов при землетрясениях. При неизвестных длинах разрывов они определялись через радиус круговой дислокации r_0 (L=2 r_0) по региональной зависимости $\lg r_0$ =0.05 K_Π — 0.76 [10]. Из формулы расчета концентрационного критерия и из практики исследования по другим регионам [9, 11] следует, что значение концентрационного критерия по мере приближения к главному разрыву постепенно уменьшается и перед началом землетрясения изменяется скачкообразно, по сравнению с контрольными «нормальными» районами.

Для поиска зон наименьших значений концентрационного критерия проведено сканирование области основных сейсмогенерирующих структур Крымско-

Черноморского региона (рис. 3). Временные ряды $K_{\kappa p}=f(t)$ построены до момента главного землетрясения (не включая его). В рассмотренной области выделено три зоны наименьших значений концентрационного критерия $K_{\kappa p}$: в очаговой зоне Форосского землетрясения, между городами Ялта и Алушта и вблизи г. Судак (рис. 3). Пространственно зона минимума $K_{\kappa p}$ в очаговой зоне Форосского землетрясения совпала с прогнозной зоной, отмеченной на рис. 2.

Было рассмотрено также пространственное изменение динамических параметров сейсмических волн: отношение максимальных амплитуд поперечной (S) и продольной (P) волн – A_S/A_P , характеризующее направленность излучения из очага по отношению к станции регистрации. Ранее [7, 12, 13] было отмечено, что перед сильным землетрясением в пределах зоны подготовки значения отношения A_S/A_P отличны от среднего долговременного. Картирование отношения значений A_S/A_P выполнено по данным сейсмической станции «Алушта» в ячейках размером $0.2^{\circ}\times0.2^{\circ}$ и с перекрытием в 0.1° . Средние значения $A_S/A_P<2$ для элементарной площадки приняты как пониженные, а значения $A_S/A_P>4$ – как повышенные по отношению к среднему долговременному значению по всему региону. Эпицентр Форосского землетрясения оказался приуроченным к зоне повышенного значения $A_S/A_P \ge 5.0$ [14]. Непосредственно перед главным землетрясением направленность излучения из очагов слабых форшоков увеличилась до $A_S/A_P=9$. Наибольшие величины отмечены для первого сильного форшока, произошедшего 16 октября в $15^{\rm h}27^{\rm m}$ ($A_S/A_P=17$), и для главного землетрясения ($A_S/A_P\approx 19$).

Прогноз, данный в работе [7], реализовался в октябре 1998 г. В пределах выделенной опасной зоны произошла серия землетрясений в диапазоне магнитуд Mw = 1.5-4.9. Главный толчок имел координаты $\phi = 44.05$ °N, $\lambda = 33.68$ °E [15] и магнитуду Mw = 4.9, полученную по спектру Р-волн [16]. Разгрузка накопленных напряжений продолжалась до середины декабря 1998 г. Поле форшоков и афтершоков Форосского землетрясения заняло в пространстве всю прогнозную зону размером ~ 450 км² (рис. 2). Суммарная энергия, выделившаяся в очаговой зоне, близка к минимальному прогнозному ее значению.

Рис. 3. Схема локализации зон пониженных значений концентрационного критерия перед Форосским землетрясением

1 – области пониженного значения концентрационного критерия; 2 – эпицентр Форосского землетрясения; 3 – зона выборки исходных данных; 4 – сейсмическая станция.

Макросейсмические данные. Макросейсмическое обследование было проведено сразу после землетрясения 20–23 октября специальным отрядом отдела сейсмологии ИГ НАНУ [17]. При обработке фактического материала использовались также данные, собранные сотрудниками сейсмических станций «Алушта», «Ялта», «Севастополь» и Государственного Никитского ботанического сада. Всего было опрошено 340 человек в 37 населенных пунктах Крыма (табл. 1).

Таблица 1. Макросейсмические данные о Форосском землетрясении 18 октября 1998 г. в $05^{\rm h}22^{\rm m}10^{\rm s}$ с Mw =4.9, K_{Π} =12.0

№	Пункт	Δ , KM	№	Пункт	Δ , km
	<u> 3 – 4 балла</u>		18	Мекензиевы горы	66
1	п. Форос	39	19	п. Любимовка	67
_	•		20	г. Гурзуф	68
	<u> 3 балла</u>		21	с. Почтовое	73
2	с. Орлиное	44	22	г. Симферополь	90
3	п. Береговое (Кастрополь)	45		Не ощущалось	
4	г. Алупка	51	23	Перевал Ласпи	40
5	г. Балаклава	51	24	м. Сарыч	40
6	г. Севастополь	62	25	с. Тыловое	44
7	п. Массандра	65	26	Понизовка	44
	<u>2– 3 балла</u>		27	п. Мисхор	52
8	п. Парковое	44	28	п. Гаспра	55
9	п. Кацивели	45	29	с. Чернореченское	55
10	с. Гончарное	46	30	п. Ливадия	60
11	п. Симеиз	48	31	ГНБС	68
12	м. Ай-Тодор	53	32	«Артек»	74
13	п. Кореиз	53	33	с. Краснокаменка	78
14	г. Ялта	63	34	п. Партенит	79
15	г. Инкерман	64	35	п. Научный (обсерватория)	79
16	Камышовая Бухта	64	36	г. Алушта	92
	(Севастополь)		37	п. Новоозерное (Евпатория)	155
17	Северная сторона	65			

Puc. 4. Схема распределения интенсивности сотрясений, вызванных Форосским землетрясением

1 — интенсивность сотрясений в баллах по шкале MSK-64 [18]; 2 — изосейста; 3 — эпицентр землетрясения. Нумерация населенных пунктов дана в соответствии с табл. 1.

Расчетная интенсивность сотрясений в эпицентре составила I_0 =5 баллов. Расчет выполнен по уравнению макросейсмического поля Н.В. Шебалина

$$I_0=1.5M-3.5 \lg h+3.0$$
,

пригодного для Крыма [3, с. 30]. С наибольшей интенсивностью сотрясений I=3-4 балла землетрясение ощущалось в пос. Форос на расстоянии 39 км от инструментального эпицентра, в котором отмечено падение подвесных полок, дребезжание посуды, скрип оконных рам, «трясение» мебели, испуг. Интенсивностью в 3 балла была охвачена территория от Севастополя до Массандры в радиусе до 65 км (рис. 4). Наибольшая дальность ощутимости в 2-3 балла составила 106 км (г. Симферополь). Наблюденные изосейсты удовлетворяют расчетному макросейсмическому полю для Крыма. В то же время в 8 пунктах, находящихся на расстоянии менее 60 км от эпицентра землетрясения, опрошенные люди сотрясений не заметили. Возможно, это связано с тем, что землетрясение произошло утром, когда большинство респондентов находились в активном движении. Не исключено также влияние на интенсивность благоприятных грунтовых условий, как, например, в районе м. Сарыч, перевала Ласпи, Мисхор и др. Кроме того, для

части пунктов статистика была очень мала (1–3 опроса, сделанных попутно по маршруту).

Очаговые параметры. Решение механизма очага землетрясения получено с использованием стандартной методики [19]. Знаки первых вступлений продольных волн были сняты непосредственно по их записям на ближайших сейсмических станциях Украины, Кавказа, Молдовы, а также использованы опубликованные в [20, 21] данные. Все построения выполнены на сетке Вульфа в нижней полусфере. Землетрясение сдвиго-надвигового характера (рис. 5а) произошло под действием близгоризонтальных сил сжатия (PL=29°), ориентированных в диагональном направлении AZM=304° [22]. Получены две возможные плоскости подвижки: близвертикальная юго-западного простирания (AZM=239°) с падением на северо-запад и субгоризонтальная (AZM=343°) с падением на восток. За наиболее вероятную плоскость разрыва можно принять близвертикальную плоскость диагонального направления, проходящую вблизи оси промежуточного напряжения N, близкую к азимуту вытянутости большой оси зоны афтершоков (рис. 6а), к ориентации Южно-Бережного глубинного разлома (рис. 1) и к направлению наибольшего из разрывов (рис. 5б).

Puc. 5. Механизм (а) и направление разрывов (б) в очаге Форосского землетрясения

По данным решения механизма очага определена направленность излучения $R_{\theta\phi}$ на сейсмические станции. Для станций «Симферополь» и «Ялта», записи которых использованы для расчета амплитудных спектров, получены для поперечных волн значения $R_{\theta\phi}$ =0.10 и 0.14 соответственно. Расчет динамических параметров очага выполнен с учетом этих определений. Значение сейсмического момента для основного толчка M_0 =2.5·10¹⁶ H·м оказалось в 4 раза выше среднего долговременного значения [10] и, соответственно, получена высокая величина моментной магнитуды – Mw=4.9–5.0. Величина сброшенных в очаге напряжений – около 60 бар, подвижка по разрыву составила 18 см, необратимая деформация сдвига – 2·10⁻⁴, радиус круговой дислокации – 1.2 км [23]. Максимальная плотность потока сейсмической энергии, определенная из энергетических спектров, приходится на частоту f=1 гц.

На основе экспериментального азимутального годографа запаздывания максимальных фаз продольных волн [24] получено, что процесс вспарывания разрыва в очаговой зоне был сложным и развивался от начального гипоцентра в двух азимутах: AZM_1 =208° и AZM_2 =133 (рис. 5б). При этом линейные размеры разрывов составили, соответственно, 13 км и 5 км [25]. Пространственно-временное распределение всей последовательности произошедших землетрясений подтверждает сложный характер процесса разрывообразования в очаговой зоне (рис. 6).

Пространственно-временные особенности в очаговой зоне. Данная серия землетрясений включает форшоки, главный толчок и афтершоки. За минувшие 15 лет — это наиболее сложная последовательность землетрясений в Крымском регионе. За два дня до главного толчка произошло 12 форшоков с K_{Π} =6.6–10.5. Как видно из рис. 6а, форшоки заняли компактную область, в плане близкую к эллипсу, с соотношением осей a/b=1.25 и с площадью ~ 150 км² (в построении рис. 6 участвовали только данные с надежной оценкой параметров гипоцентров). Область форшоков наклонена по глубине к северо-западу под углом ~45° от поверхности Земли (рис. 6б). Разрушение среды началось в юго-восточной части зоны на глубинах h=20–25 км с постепенным заглублением в северо-западном направлении до h=35 км по линии Одесско-Синопского разлома. Основной толчок произошел в верхних слоях деформированной очаговой области на глубине h=22 км. Первый, он же и наиболее сильный, афтершок с K_{Π} =8.9 возник через 5 минут вблизи главного землетрясения. Постепенно процесс разгрузки напряжения от начального гипоцентра главного толчка распространялся со средней скоростью около 4 км в сутки в юго-западную верхнюю часть глубинной среды очаговой зоны (рис. 6б) с последующим изменением направления миграции [14].

Рис. 6. Пространственное распределение эпицентров (а) и гипоцентров форшоков (б) и афтершоков (в) с K_{Π} >7 Форосского землетрясения вдоль вертикальных разрезов AA' и BB' Звездочкой отмечен эпицентр основного толчка.

Площадь зоны эпицентров афтершоков превысила зону форшоков более чем в два раза, охватив юго-западные верхние горизонты общей очаговой зоны. Очаговую зону афтершоков можно представить эллипсоидом, вытянутым в плане в азимуте ≈ 30° (210°) вдоль Южно-Бережного разлома (рис. бв) и заглубленным в северо-восточном направлении под углом около 45° от поверхности Земли (рис. 6б). На северном краю зоны, где пересекаются области форшоков и афтершоков, отмечается сложный изгиб сейсмофокальной зоны, связанный, вероятно, с узлом сочленения двух крупных геологических структур. В целом заметна слабая тенденция погружения всей фокальной зоны в северном направлении (рис. 6), т.е. в сторону материковой части Крыма. Как видно из рис. 1, в этом же направлении происходит погружение границы Мохо. Пространственно-временное распределение эпицентров предшествующих и последующих толчков подтверждает, что процесс вспарывания в очаге был сложным и развивался в двух направлениях: с северо-востока на юго-запад в азимуте $AZM=208^{\circ}(28^{\circ})$ и с северо-запада на юго- восток в азимуте $AZM=133^{\circ}$ (313°). По-видимому, форшоковый процесс подготовил одно из направлений вспарывания в очаге главного землетрясения, а именно юго-восточное, вдоль Одесско-Синопского разлома, а афтершоковый завершил снятие накопленных напряжений, разгружая зону вдоль главного юго-западного разрыва.

Процесс разгрузки напряжений в очаговой зоне был неравномерным в пространстве и во времени. Наименьшие промежутки времени и расстояния между последовательными толчками отмечены с 16 по 18 октября и с 24 по 25 октября (рис. 7а). В конце как форшокового, так и афтершокового периодов число землетрясений уменьшилось, и они стали происходить через более длительные интервалы времени dT. В целом для всего периода наблюдений заметна общая тенденция роста $\lg dT$ со временем (рис.7а). Последний афтершок в 1998 г. с $K_{\Pi} \approx 8$ произошел 11 декабря в $06^{\rm h}42^{\rm m}$ на глубине 34 км на расстоянии около 5 км от главного толчка.

Рис. 7. Изменение со временем t: интервала dT (a) и отношения $v_R = dR/dt$ (б) между последовательными событиями для форшоков и афтершоков Форосского землетрясения

Момент главного толчка отмечен стрелкой.

Условная скорость разрушения среды υ_R , выраженная через отношение dR/dt, где dR – расстояние между последовательно происходящими толчками, также была нестабильна во времени (рис. 7б). Наибольшая скорость, превышающая υ_R =70 км/мин, отмечена в первые часы сейсмического процесса, а наименьшая – около 1 км/сутки – в конце афтершокового периода. Среднее значение условной скорости разрушения среды для всего периода активизации зоны υ_R ≈ 5 км/мин. После главного толчка процесс разгрузки зоны значительно замедлился и протекал при средней скорости υ_R ≈ 0.13 км/мин.

Во многом описанная последовательность событий Форосского землетрясения имеет общие черты подготовки и реализации с последовательностью двух более ранних сейсмических событий в регионе: Крымского землетрясения 11.09.1927 г. (t_0 =22 $^{\rm h}$ 15 $^{\rm m}$, MLH=6.8, Mw=6.9 [4, 26, 27]) и землетрясения 05.07.1984 г. (t_0 =03 $^{\rm h}$ 07 $^{\rm m}$, $K_{\rm H}$ =11.4, Mw=4.4, $m_{\rm b}$ =4.2 [5, 28]).

Тектоническая деформация є и скорость деформирования среды υ_{ϵ} за счет землетрясений рассчитаны с использованием понятия течения горных масс [29] по формулам:

$$\varepsilon = \frac{1}{2\mu \cdot \Delta \upsilon} \sum_{i=1}^{N} M_0, \quad \upsilon_{\varepsilon} = \frac{\varepsilon}{t},$$

где Δv – объем среды; t – время в годах; M_0 – сейсмический момент; μ – модуль сдвига.

Для очаговой зоны размерами 35×15 км и мощностью активного сейсмофокального слоя Δh =20 км за период с 16 октября по 11 декабря общий вклад от землетрясений в тектоническую деформацию среды элементарного объема составил ϵ =2.5·10⁻⁴ при средней скорости деформации υ_{ϵ} =1.2·10⁻⁶/год. Во время форшокового периода процесс деформирования среды шел со скоростью, близкой к средней (1.5·10⁻⁶/год), а после основного толчка эта скорость возросла примерно в 1.5 раза и составила 2.15·10⁻⁶/год. Ясно, что локальные участки земной коры во время отдельных землетрясений испытывали деформации, намного отличающиеся от средних. Так, только во время главного толчка общая деформация среды в очаге составила ϵ =2.0·10⁻⁴ [23], внеся основной вклад в необратимую тектоническую деформацию среды данного района.

Энергетические характеристики. Процесс выделения энергии в очаговой зоне наиболее интенсивно протекал в форшоковый период – 16 октября и в афтершоковый – с 24 по 25 октября. Суммарная энергия предшествующих толчков составила ΣE_{φ} = $10^{10.75}$ Дж, что приблизительно в 36 раз больше суммарной энергии афтершоков. Энергетическая ступень ΔK между главным землетрясением и наиболее сильными форшоком и афтершоком составила ΔK_{φ} =1.5 и ΔK_a =3.1 соответственно. Остальные предшествующие и повторные толчки были еще более слабые. Такая большая разница (на три и более порядка) в энергетических уровнях между главным толчком и афтершоками свидетельствует о повышенной прочности среды, вмещающей очаги. В зонах пониженной прочности значения ΔK_a не превышают одного порядка [30]. Например, в центральной части Крымско-Черноморского региона (в Южно-Бережной флексурной зоне) при сложных последовательностях землетрясений 09.07.1967 г. (t_0 = 12^h 59 m ; K_{Π} =10.4; Mw=3.9) и 05.07.1984 г. (t_0 = 03^h 07 m ; K_{Π} =11.4; Mw=4.4) [4] энергетическая ступень между основным толчком и наиболее сильным афтершоком ΔK_a составляла 0.6 и 0.7 для 1967 и 1984 гг. соответственно [28, 31].

График повторяемости в рассматриваемой очаговой зоне существенно отличается от среднего долговременного для основной сейсмогенерирующей структуры за последние 43 года. Построены три графика повторяемости $\lg N_{\Sigma} = f(K_{\Pi})$: 1- за 43 года для площади зоны, как на рис. 3; 2- за время T=0.15 года для очаговой зоны, включая всю последовательность; 3- для форшоков за время T=2 дня. Использован метод суммирования с нормировкой на площадь зон отбора данных и период наблюдений. Методом ортогональной регрессии получены следующие уравнения:

$$\lg N_{\Sigma} = (0.41 \pm 0.27) - (0.48 \pm 0.02) K_{\Pi},$$
 (1)

$$\lg N_{\Sigma} = (1.68 \pm 0.14) - (0.28 \pm 0.01) K_{\Pi},$$
 (2)

$$\lg N_{\Sigma} = (3.84 \pm 0.66) - (0.32 \pm 0.07) K_{\Pi}.$$
 (3)

Как видим, для форшоков получено небольшое значение γ =0.32. Причина малого наклона графика повторяемости для слабых предшествующих толчков заключается в увеличении напряжений в среде вокруг очаговой зоны перед главным ее разрушением, в локализации объемного разрушения среды вдоль поверхности будущего разрыва. Это можно объяснить с позиции теории лавинно-неустойчивой трещиноватости [32]. Частота микротолчков и, соответственно, значения наклона графика повторяемости γ в период дилатантного упрочнения уменьшается. Это подтверждается и результатами экспериментов по разрушению образцов горных пород [8] и по исследованию динамики повторяемости форшоков за несколько суток до главного землетрясения [33]. Тот факт, что угловой коэффициент графика повторяемости за весь период разгрузки зоны, включая форшоки и афтершоки, составил γ =0.28, т.е. не только не возрос, по сравнению с форшоковым периодом, но даже уменьшился, заставляет предполагать, что данная зона не исчерпала своих энергетических возможностей и остается потенциально опасной.

Заключение. Ощутимое Форосское землетрясение произошло в условиях сжимающих тектонических напряжений в зоне сочленения двух крупных сейсмогенных структур диагональной ориентировки – Южно-Бережной и Одесско-Синопской, что предопределило сложный двунаправленный характер вспарывания в очаге.

Процесс подготовки землетрясения длился около 5 лет. Признаки его подготовки выразились в тенденции постепенного стягивания эпицентров более слабых толчков к зоне будущей

разгрузки, в длительном периоде затишья в самой эпицентральной зоне и в уменьшении концентрационного критерия сейсмогенных разрывов в области, окружающей очаг. Землетрясение произошло в пределах прогнозной области с интенсивностью в эпицентре 5 баллов и максимальной интенсивностью сотрясений на побережье 3–4 балла.

Реализовавшаяся серия землетрясений относится к сложной последовательности, состоящей из форшоков, главного толчка и афтершоков. Общая очаговая зона имела форму эллипсоида с линейными размерами ~35×15×20 км. В пространстве эта сейсмофокальная зона ориентирована по азимуту около 30° (210°) с погружением в сторону материковой части. Процесс разрушения среды начался за 2 суток до главного землетрясения в северо-восточной части, приуроченной к Одесско-Синопской флексурной зоне. После основного снятия напряжений последующая разгрузка напряжений в очаговой зоне шла в основном вдоль Южно-Бережного глубинного разлома.

Можно отметить, что различные стадии сейсмического процесса в очаговой зоне Форосского землетрясения имели общие свойства: пространственно-временная упорядоченность, миграция вдоль зоны, спад скорости выделения энергии и увеличение промежутков времени между последовательными толчками. В то же время форшоковый и афтершоковый периоды имели и отличительные особенности по пространственно-временным, энергетическим и скоростным параметрам, обусловленные особенностями двух крупных разнонаправленных и разновозрастных тектонических структур, с которыми были связаны процессы накопления и высвобождения упругой энергии.

Литература

- 1. **Борисенко Л.С., Плахотный Л.Г.** Геодинамика Крымско-Черноморского региона как следствие многоуровневого тектоногенезиса // Геодинамика Крымско-Черноморского региона. Симферополь: НАНУ, КЭС, 1997. С. 54– 64.
- 2. Пустовитенко Б.Г., Кульчицкий В.Е., Борисенко Л.С., Поречнова Е.И. Общее сейсмическое районирование территории Крыма (ОСР-98) // Геофизический журнал. -1999. -№ 6. T. 21. C. 3-15.
- 3. **Пустовитенко Б.Г., Пантелеева Т.А.** Землетрясения Крыма // Землетрясения в СССР в 1986 году. М: Наука, 1989. С. 28–34.
- 4. **Кульчицкий В.Е., Зарайский М.П.** (отв. сост.), **Каменобродский А.Г., Попов И.И., Шебалин Н.В., Якушева В.Н.** II а. Крым и Нижняя Кубань [150 до н.э.−1974 гг., $M \ge 3.5$, $I_0 \ge 5$] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука. С. 55–68.
- 5. **Пустовитенко Б.Г., Кульчицкий В.Е., Горячун А.В.** Землетрясения Крымско-Черноморского региона. Киев: Наукова думка, 1989. 192 с.
- 6. **Пустовитенко Б.Г.** Очаговые параметры Черноморских землетрясений 18 марта 1957 и 12 июля 1966 г. // Сейсмологический бюллетень Украины за 1999 год. Симферополь: ИГ НАНУ, КЭС, 2001. C.96-101.
- 7. **Пустовитенко Б.Г., Капитанова С.А., Кульчицкий В.Е., Пантелеева Т.А., Поречнова Е.И.** Анализ текущей сейсмической обстановки в Крыму по сейсмологическим данным // Проблемы сейсмобезопасности Крыма. Севастополь: Крымского отд. НАНУ, 1995. С. 58–67.
- 8. **Каменобродский А.Г., Пустовитенко Б.Г., Поречнова Е.И.** Пространственно-временное распределение эпицентров слабых толчков как индикатор подготовки сильных землетрясений // Физика Земли. -1987. № 10. С. 3-10.
- 9. **Соболев Г.А.** Основы прогноза землетрясений. М.: Наука, 1993. 313 с.
- 10. **Пустовитенко Б.Г., Пантелеева Т.А.** Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 250 с.
- 11. **Завьялов А.Д., Орлов В.С.** Карта ожидаемых землетрясений Туркмении и сопредельных территорий // Изв. АН ТССР. Сер. ФТХиГН. 1993. –№ 1. С. 56–61.
- 12. **Грин В.П., Ильясов Б.И., Ким Н.И., Кригер Л.Р., Лопатина Т.А., Меджитова З.А., Беленович Т.Я.** Некоторые результаты прогностических исследований на Фрунзенском полигоне // Физические процессы в очагах землетрясений. М.: Наука, 1980. С. 14–26.
- 13. **Lindh A.G., Fuis G. and Mantis C**. Seismic amplitude measurements suggest foreshocks have different focal mechanisms than aftershocks // Science. −1978. − V. 201. − № 4350. − P. 56–59.

- 14. **Пустовитенко Б.Г., Поречнова Е.И.** Особенности сейсмических процессов в очаговой зоне землетрясения в Крыму 18 октября 1998 года // Сейсмологический бюллетень Украины за 1998 г. Симферополь: ИГ НАНУ, КЭС, 2000. С. 64–74.
- 15. Свидлова В.А. (отв. сост.) Крым (См. раздел IV (Каталоги землетрясений) в наст. сб. на CD).
- 16. **Князева В.**С. Ощутимое землетрясение 18 октября 1998 года в Крыму // Сейсмологический бюллетень Украины за 1998 г. Симферополь: ИГ НАНУ, КЭС, 2000. С. 74 76.
- 17. **Пустовитенко А.Н., Свидлова В.А., Пустовитенко Б.Г., Поречнова Е.И., Сыкчина З.Н.** Крым (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 18. **Медведев С.В.** (**Москва**), **Шпонхойер В.** (**Иена**), **Карник В.** (**Прага**) Шкала сейсмической интенсивности MSK-64. M: МГК АН СССР, 1965. 11с.
- 19. Балакина Л.А., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 198 с.
- 20. **Сейсмологический бюллетень (ежедекадный) за 1998 год** / Отв. ред. О.Е. Старовойт. Обнинск: ПОМЭ ГС РАН, 1998–1999.
- 21. Bulletin of the International Seismological Centre (for 1998) Berkshire: ISC, 2000.
- 22. **Пустовитенко А.А.** Крым (См. раздел V (Каталоги механизмов) в наст. сб. на CD).
- 23. Пустовитенко А.Н., Свидлова В.А., Пустовитенко Б.Г., Поречнова Е.И., Свидлова В.А., Сыкчина З.Н. Крым (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 24. Горбунова И.В., Бойчук А.Н., Доцев Н.И., Кальметьева З.А., Капитанова С.А., Кучай О.А., Михайлова Н.Н.. Пустовитенко Б.Г., Симбирева И.Г., Товмасян А.К. Интерпретация очаговых волн на записях землетрясений. М.: Наука, 1992. 130 с.
- 25. **Пустовитенко Б.Г., Капитанова С.А.** База данных по разрывам (электронная версия). Симферополь: Фонды отдела сейсмологии ИГ НАНУ, 2001.
- 26. **Пустовитенко Б.Г., Кульчицкий В.Е., Аверьянова В.И., Шебалин И.В.** Особенности очаговых зон сильных Крымских землетрясений 11 сентября и 26 июля 1927 года // Инженерно-сейсмические проблемы (Вопр. инж. сейсмологии; Вып. 18). М.: Наука, 1976. С. 103–114.
- 27. **Пустовитенко Б.Г.** Динамические параметры очагов разрушительных Крымских землетрясений 1927 года // Сейсмологический бюллетень Украины за 2001 год. Симферополь: ИГ НАНУ, КЭС, 2003. С. 124–130.
- 28. **Pustovitenko B.G., Kapitanova S.A., Panteleeva T.A.** Development of the focal zone of the Crimea earth-quake on July 5, 1984 // Proceedings of the XXI General Assembly 23–27 August 1988. Sofia. Bulgaria, 1989. P. 415–426.
- 29. Ризниченко Ю.В. Проблемы сейсмологии. М.: Наука, 1985. 408 с.
- 30. **Каменобродский А.Г., Пустовитенко Б.Г.** Особенности группирования землетрясений Крымско-Черноморского региона // Физика Земли. -1982. № 11. С. 25—32.
- 31. **Пустовитенко Б.Г.** Особенности проявления афтершоковой последовательности землетрясения в Крыму, произошедшего 9 июля 1967 года // Сейсмологический бюллетень западной территориальной зоны ЕССН (Крым–Карпаты, 1980 г.). Киев: Наукова думка, 1984. С. 94–100.
- 32. **Мячкин В.И., Костров Б.В., Соболев Г.А., Шамина О.Г**. Основы физики очага и предвестники землетрясений // Физика очага землетрясения. М.: Наука, 1975. С. 6–29.
- 33. **Молчан Г.Н., Дмитриева О.Е.** О динамике повторяемости форшоков // Теория и алгоритмы интерпретации геофизических данных (Вычислительная сейсмология; Вып. 22). М.: Наука, 1989. С. 3–17.