ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ

А. И. Захарова, Л. С. Чепкунас

Изучение очаговых параметров землетрясений, основных и динамических, проведено для пяти наиболее сильных землетрясений земного шара с магнитудами ≥ 6.5 , очаги которых расположены в земной коре и имеют эпицентральные расстояния $\Delta \leq 100^{\circ}$ до станции «Обнинск». Это связано с возможностью расчета спектров продольных волн в указанном эпицентральном расстоянии. Здесь же рассмотрены два землетрясения с магнитудами менее 6.5: 4 февраля в $14^{h}33^{m}$ с MS=5.9 и 15 апреля в $15^{h}23^{m}$ с MS=5.8 [1]. Первое является форшоком сильного (MS=6.7) землетрясения 30 мая в $06^{h}22^{m}$ в пограничной области Афганистан-Таджикистан. Эпицентр второго землетрясения расположен на Камчатке. Оно представляет интерес для изучения прогностической ситуации в этом регионе России. Рассмотрены следующие основные параметры землетрясений: время возникновения t_0 , координаты гипоцентра φ , λ , h и магнитуды MPSP, MPLP, MS, Ms, m_b , Mw; динамические параметры: сейсмический момент M_0 , длина разрыва L в очаге, сброшенное $\Delta \sigma$ и кажущееся $\eta\sigma$ напряжения, величина подвижки \bar{u} , элементы механизмов очагов.

Основные параметры очагов землетрясений представлены в табл. 1, где I – данные Сейсмологического бюллетеня ЦОМЭ ОИФЗ РАН [1]; II, III – данные Международного сейсмологического бюллетеня (ISC) [2]. Значения гипоцентров в I и II получены по временам первых вступлений *P*-волн на основе годографа Джеффриса-Буллена [3], но по разным системам наблюдений, в III – по методу тензора момента центроида [4].

N₂	Дата,	Вариант	<i>t</i> ₀ ,	Ги	поцентр			Магни	итуды		Район		
	Д М		ч мин с	φ°, N	λ°, Ε	h,	Mw	MPSP,	MPLP MS,				
						км		$m_{\rm b}$		Ms			
1	2	3	4	5	6	7	8	9	10	11	12		
1	04.02	Ι	14 33 21.8	37.15N	70.06	35		6.0	6.0	5.9	Афганистан-Таджикистан		
		II	14 33 21.5	37.08	70.08	31*		5.5		6.0	(пограничная область)		
		III	14 33 22.8	37.13	69.92	34	5.9						
2	15.04	Ι	15 23 09.5	58.36N	164.44	59		6.1	6.4	5.8	Камчатка, Россия		
		II	15 23 04.0	58.54	164.38	19*		5.6		5.7			
		III	15 23 09.9	58.64	165.05	30	5.9						
3	03.05	Ι	23 30 22.6	22.53N	125.36	33		6.8	7.1	7.5	Юго-восточнее о. Тайвань		
		II	23 30 24.1	22.30	125.32	51*		6.1		7.2			
		III	23 30 37.7	22.37	125.53	23	7.5						
4	30.05	Ι	06 22 29.0	37.13N	70.14	33		6.1	6.4	6.7	Афганистан-Таджикистан		
		II	06 22 29	37.15	70.12	29*		5.7		6.7	(пограничная область)		
		III	06 22 36.9	37.38	70.08	24	6.6						
5	01.06	Ι	05 34 04.2	52.95N	160.00	48		6.3	6.5	6.6	У восточного побережья		
		II	05 34 04.2	52.88	160.02	46*		6.0		6.3	Камчатки		
		III	05 34 10.6	52.87	160.43	38	6.5						
6	17.07	Ι	08 49 15.5	2.97S	141.78	33		5.9	6.7	6.8	Северное побережье		
		II	08 49 23	3.20S	141.67	38*		5.5		6.9	о. Новая Гвинея		
		III	08 49 32.6	2.50S	142.07	15	7.0						
7	29.11	Ι	14 10 32.4	1.91S	124.88	33		6.8	7.3	7.6	Молуккское море		
		II	14 10 27	1.98S	124.88	33*		6.2		7.4			
		III	14 10 45.1	2.03S	125.00	16	7.7						

Таблица 1. Сведения о землетрясениях за 1998 г.

Примечание. В графе 7 знаком * отмечена глубина очага по волнам типа *pP-P*, отраженным от дневной поверхности вблизи эпицентра, из [2]; в графе 8 дана моментная магнитуда *Mw* по данным HRVD из [2]. Различия в параметрах t_0 , ϕ , λ , h по I и II в большинстве случаев находятся в пределах погрешности их определений. Однако, как отмечалось и ранее, например в [5], для ряда землетрясений наблюдаются расхождения в магнитудах, достигающие 0.4-0.8 единиц *MS*, что превышает допустимые погрешности расчета. Как следует из табл. 1, самые сильные землетрясения года произошли на относительно небольших глубинах. Среди семи рассмотренных землетрясений два (1, 4) произошли в Альпийско-Гималайском складчатом поясе, пять остальных – в Тихоокеанском сейсмическом поясе.

Механизмы очагов для четырех землетрясений (1, 2, 6, 7) приведены в табл. 2 по данным HRVD из [2]. Они получены для модели двойной пары сил по методу тензора момента центроида [4]. Стереограммы их механизмов очагов в проекции нижней полусферы даны на рис. 1. Механизмы очагов трех других землетрясений (3, 4, 5) уже описаны в статье [6] настоящего сборника. Они получены по знакам первых вступлений *P*-волн. При этом они близки к решению по HRVD [2] (в пределах ошибок расчета).

Рис. 1. Механизмы очагов землетрясений

1 - нодальные линии; 2,3 - оси главных напряжений сжатия и растяжения соответственно; зачернены области сжатия.

№	Дата,	<i>t</i> ₀ ,	h,		Магнит	уды	0	си гла	вных напряжений				Нодальные плоскости					
	д м	ч мин с	КМ	Mw	MS/n	MPSP/n	Т		Ν		Р		NP1		NP2			
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	04.02	14 33 21.8	31*	5.9	5.9/32	6.0/29	8	75	76	308	11	167	211	76	-2	301	88	-166
2	15.04	15 23 09.5	19*	5.9	5.8/26	6.1/36	76	293	6	50	12	141	239	33	101	46	57	83
6	17.07	08 49 15.5	38*	7.0	6.8/11	5.9/11	59	181	11	290	29	26	146	19	127	287	75	78
7	29.11	14 10 32.4	33*	7.7	7.6/14	6.8/17	1	324	52	232	38	55	92	63	-28	196	65	-150

Таблица 2. Параметры механизмов очагов по [2]

Решения механизмов очагов землетрясений (1, 4) в пограничной области Афганистан-Таджикистан подобны. Землетрясения возникли под действием близких по величине напряжений растяжения и сжатия. Оси растяжения ориентированы в субширотном направлении, оси сжатия – в субмеридиональном. Одна из нодальных плоскостей имеет юго-западное простирание, вторая – северо-западное, обе плоскости имеют крутое падение. Тип движения по обеим плоскостям представлен сдвигами с небольшими компонентами сброса.

Для землетрясений (2, 5) на Камчатке механизмы очагов также имеют близкие решения. Движения в очагах произошли под действием напряжений сжатия, ориентированных в юговосточном направлении. Обе нодальные плоскости имеют северо-восточное простирание по крутопадающей плоскости, тип движения – взброс, по пологой – надвиг.

Землетрясение (3) на Тайване возникло под действием близких по величине напряжений растяжения и сжатия. Ось растяжения ориентирована в субмеридиональном направлении, ось сжатия в – субширотном. Движение в очаге по обеим круто падающим плоскостям представлено сдвигом. Землетрясение (6) близ о. Новая Гвинея возникло под действием превалирующих сжимающих напряжений, ориентированных на северо-восток. Движение в очаге представлено взбросом по круто падающей плоскости (*NP1*) северо-восточного простирания и надвигом – по пологой плоскости (*NP2*) юго-восточного простирания.

Землетрясение (7) в Молуккском море возникло под действием растягивающих напряжений, ориентированных в северо-западном направлении. Обе нодальные плоскости наклонены под близкими углами (*DP*=63°-65°), *NP*1 имеет субширотное простирание, *NP*2 – субмеридиональное. Подвижки по ним имеют характер сдвигов с небольшой компонентой сброса.

Динамические параметры рассчитывались по методике [7, 8] на основе спектров продольных волн, записанных цифровой аппаратурой IRIS на станции «Обнинск». Станционные спектры, исправленные за аппаратуру и условия распространения *P*-волн, т.е. приведенные к очагу, показаны на рис. 2. Спектральные характеристики очагов (уровень Ω_0 длиннопериодной ветви спектра, частота f_{Π} точки перелома спектра, частота f_0 его угловой точки) и их динамические параметры (сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения), а также характеристики разрыва в очагах (длина *L* и подвижка \bar{u}) представлены в табл. 3 для шести землетрясений ($N \cong N \cong 1-5$, 7 из табл. 1). Для землетрясения (6) из Новой Гвинеи записи продольных волн на станции «Обнинск» для расчета спектров оказались непригодными ($\Delta > 100^\circ$).

Рис. 2. Очаговые спектры *P*-волн, записанные на станции «Обнинск» Номера спектров соответствуют номерам землетрясений в табл. 1.

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений по записям цифровой аппаратуры IRIS на станции «Обнинск»

№	Дата, дм	<i>t</i> ₀ , ч мин с	<i>h</i> , км	Mw	Δ°	Ω ₀ ·10 ⁻⁴ , м·с	<i>f</i> _n ·10 ⁻² , Гц	<i>f</i> ₀ ·10 ⁻² , Гц	$M_0 \cdot 10^{19},$ H·M (OBN)	$M_0 \cdot 10^{19},$ H·M (HRVD)	<i>L</i> ·10 ³ , м	Δσ·10 ⁵ , Н/м ²	ησ·10 ⁵ , Η/м ²	<i>и</i> , м
1	04.02	14 33 21.8	31*	5.9	28.95	0.033	25	45	0.06	0.0084	11	16	32	0.21
2	15.04	15 23 09.5	19*	5.9	59.36	0.041	8.5	20	0.28	0.0068	29	4	10	0.14
3	03.05	23 30 22.6	51*	7.5	71.15	0.977	12	14	4.4	18.0	35	36	68	1.53
4	30.05	06 22 29.0	29*	6.6	29.01	0.151	5	28	2.9	0.79	18	2	9	0.38
5	01.06	05 34 04.2	46*	6.5	62.60	0.316	3	11	2.2	0.58	52	5	2	0.34
7	29.11	14 10 32.4	33*	7.7	90.59	1.95	5	9	14.4	45.0	52	36	21	2.26

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1998 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1998–1999.
- 2. Bulletin of the International Seismological Centre (for 1998). Berkshire: ISC, 2000.
- 3. Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 4. Dzievonski A., Chou T. and Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. V.86. №B4. P. 2825–2852.
- 5. Захарова А.И., Чепкунас Л.С. Очаговые параметры сильных землетрясений Земли // Землетрясения Северной Евразии в 1996 году. М.: ОИФЗ РАН, 2002. С. 165-170.
- 6. Старовойт О.Е., Захарова А.И., Рогожин Е.А., Михайлова Р.С., Пойгина С.Г. Евразия в 1997–1998 гг. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 7. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – №2. – С. 60–70.
- 8. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – №2. – С. 66–79.