СЕВЕРО-ВОСТОК РОССИИ

Л.В. Гунбина, Н.М. Лещук, Б.М. Седов

В 1998 г. сейсмический мониторинг осуществлялся с помощью девяти сейсмических станций Магаданской опытно-методической сейсмологической партии (МОМСП) ГС РАН: семи на территории Магаданской области и двух – на Чукотке. Параметры этих станций по состоянию на 1998 г. такие же, как в 1997 г. [1].

Кроме того, с февраля по май 1998 г. в МОМСП была поставлена на опытную эксплуатацию цифровая станция на базе процессора I-486, 16 разрядного АЦП, БФХ и сейсмоприемников СМ-3. Станция работала параллельно со станцией IRIS в Магадане. В ходе эксплуатации проводилось сравнение данных, полученных на этих станциях, которые конвертировались в формат ASCII и обрабатывались с помощью программы WGSN.

Результат такого сравнения оказался не в пользу БФХ–СМ-3. Из 50 близких землетрясений, зарегистрированных IRIS, опытной станцией записано 13, причем полностью с возможностью определения всех энергетических характеристик – только 5 с $K_P \ge 10.0$ на эпицентральных расстояниях $\Delta \le 300$ км. Низкую чувствительность станции можно объяснить высоким уровнем помех из-за расположения в центре города. Из анализа ее амплитудно-частотной характеристики следует, что она удовлетворительно работает в очень узкой для цифровых станций полосе частот от 0.2–10 Гц. Дальность регистрации в 300 км также недостаточна, т. к. размеры территории Магаданской области и ее слабая населенность не позволяют размещать станции на расстоянии менее 400–500 км.

Энергетическая представительность землетрясений, обеспечиваемая описанной сетью, изображена на рис. 1. Как видим, минимальный уровень энергии представительных землетрясений соответствует K_{\min} =7. Такие землетрясения регистрируются без пропусков в области наибольшей плотности станций. В целом же в западной части региона не могут быть пропущены землетрясения, начиная с 10-го класса. В восточной части региона ситуация с регистрацией землетрясений гораздо хуже, т. к. без пропусков будут записаны лишь сильные землетрясения с $K_P \ge 12$.

Рис. 1. Карта энергетической представительности K_{\min} землетрясений за 1998 г.

1 – изолиния K_{\min} ; 2 – граница региона; 3 – сейсмическая станция.

Методика определения основных параметров землетрясений [2,3] не изменилась. В 1998 г. в регионе зарегистрировано 123 местных землетрясения [4] с $K_P \ge 7.4$, из них 8 обработаны вне границ региона (3 – в Якутии и 5 – в Хабаровском крае). Очаги всех землетрясений расположены в пределах земной коры на глубинах от 1 до 34-х километров. Распределение землетрясений региона по энергетическим классам и суммарная сейсмическая энергия по районам даны в табл. 1, а вне региона – в табл. 2. Выделенная суммарная сейсмическая энергия, равная 43.56·10¹¹ Дж, уменьшилась в 2.3 раза, по сравнению с таковой ($\Sigma E = 102.45 \cdot 10^{11}$ Дж) в 1997 г. [1].

№	Район		k	С _Р		N_{Σ}	$\Sigma E \cdot 10^{11}$,				
		7	8	9	10	11	12	13	14		Дж
1	Охотское море	_	1	5	2	_	2	-	_	10	26.08
2	Колыма	1	13	59	25	6	1	_	_	105	16.72
3	Западная Чукотка	_	_	_	_	_	—	_	_	_	-
4	Восточная Чукотка	_	_	_	_	_	_	_	_	_	-
5	Чукотское море	_	_	_	_	_	—	_	_	_	-
6	Берингово море	_	_	—	—	—	—	—	—	—	-
7	Корякия	_	—	—	—	—	—	-	—	_	-
	На соседних территориях		1	4	4					9	0.76
	Всего	1	14	64	27	6	3	_	-	123	43.56

Таблица 1. Распределение числа землетрясений по энергетическим классам *К*_Р и суммарная сейсмическая энергия *ΣЕ* по районам

Как следует из табл. 1, землетрясения зарегистрированы только в районах № 1 (Охотское море) и № 2 (Колыма). В районах № 3, 4, 5, 6, 7 (Западная и Восточная Чукотка, Чукотское море, Берингово море, Корякия) существующей сетью станций не записано ни одного события [4]. Ни одно из землетрясений, даже достаточно крупных (14 и 16 марта (в $17^{h}03^{m}$ с $K_{P}=12.2$ и в $05^{h}33^{m}$ с $K_{P}=12.0$ соответственно), 30 ноября (в $23^{h}25^{m}$ с $K_{P}=11.8$) и 18 декабря (в $14^{h}03^{m}$ с $K_{P}=11.5$)), жителями Магаданской области не ощущались, хотя первые два ощущались на Камчатке [4,5].

Все события, зарегистрированные станцией «Анадырь», отнесены к землетрясениям с неопределенными координатами из-за недостаточности информации для определения местоположения эпицентра. Попытки определения эпицентров землетрясений Чукотского полуострова с помощью данных сейсмических станций США на Аляске пока не привели к положительным результатам, возможно из-за большой удаленности станций друг от друга. На рис. 2 показана карта эпицентров землетрясений в 1998 г.

Рис. 2. Карта эпицентров землетрясений Северо-Востока России за 1998 г.

1 – энергетический класс *K*_P; 2 – сейсмическая станция; 3, 4 – граница района и региона соответственно.

Особенностью сейсмического процесса в 1998 г. является наличие двух роев (рис. 2). Один из них реализовался в акватории Охотского моря (район № 1). Этот рой немногочисленный (n=4), но содержит два землетрясения 12-го класса. Второй рой произошел севернее, в районе № 2, вблизи пос. Меренга и включает около 200 землетрясений, из которых удалось полностью обработать только 73, в основном достаточно сильных с K_P =9–10. В каталоге [4] эти 73 землетрясения роя отмечены знаком «*». Карта их эпицентров представлена на рис. 3. Максимальный толчок зарегистрирован 26 марта в 06^h41^m с K_P =11.1. Ближайшей станцией, на которой записан весь рой, является «Омсукчан» (OMS). По ее сейсмограммам удалось определить приближенно эпицентры еще 86 толчков роя (табл. 2).

Рис. 3. Карта эпицентров роя землетрясений в районе между поселками Галимый и Меренга с 18 февраля по 14 сентября 1998 г.

1 – энергетический класс *К*_P; 2 – сейсмическая станция.

Таблица 2. Список землетрясений роя, локализованных по одной станции «Омсукчан»

N⁰	Дата,	<i>t</i> ₀ ,	δt_0 ,	Эпи	центр	δ,	<i>h</i> ,	$t_{\rm S}$ - $t_{\rm P}$,	N⁰	Дата,	<i>t</i> ₀ ,	δt_0 ,	Эпи	центр	δ,	<i>h</i> ,	$t_{\rm S}$ - $t_{\rm P}$,
	Д М	ч мин с	с	φ°, N	λ°, E	КМ	КМ	с		Д М	ч мин с	c	φ°, N	λ°, E	КМ	КМ	c
1	19.02	01 30 13.9	0.1	61.94	156.71	1	6	10.6	21	01.03	18 55 27.4	0.1	62.01	156.44	1	6	10.4
2	19.02	02 31 20.1	0.1	62.03	156.48	1	6	10.3	22	04.03	20 58 39.5	0.1	62.08	156.52	1	6	10.4
3	19.02	21 27 42.4	0.5	61.83	156.35	3	6	10.9	23	05.03	04 06 23.7	0.1	61.97	156.47	1	6	10.3
4	19.02	23 24 39.4	0.1	62.08	156.58	1	6	10.4	24	05.03	04 08 27.4	0.1	61.99	156.37	1	6	10.3
5	20.02	01 41 26.4	0.1	62.12	156.44	1	6	10.4	25	07.03	14 23 22.8	0.1	62.01	156.39	1	6	10.4
6	20.02	08 18 41.6	0.1	62.01	156.47	1	6	10.4	26	15.03	16 44 06.6	0.3	62.08	156.52	2	6	10.2
7	20.02	09 50 20.0	0.1	62.02	156.40	1	6	10.6	27	20.03	17 38 41.8	0.3	61.97	156.37	2	6	10.6
8	20.02	10 21 54.1	0.1	61.88	155.21	1	6	10.7	28	20.03	17 51 13.1	0.6	61.97	156.59	4	6	10.4
9	20.02	10 25 50.6	0.3	62.01	156.69	1	6	10.0	29	20.03	18 16 55.9	0.7	62.04	156.08	5	6	10.8
10	20.02	11 06 12.4	0.2	62.13	156.39	2	6	10.4	30	25.03	10 33 56.3	0.4	61.99	156.61	1	6	10.2
11	20.02	13 09 01.7	0.4	62.06	156.31	2	6	10.6	31	25.03	14 37 01.3	0.4	62.01	156.25	2	6	10.3
12	20.02	13 21 05.6	0.1	62.06	156.29	1	6	10.0	32	25.03	14 39 02.5	0.4	62.03	156.23	2	6	10.3
13	20.02	13 25 31.4	0.1	62.08	156.29	1	6	10.4	33	25.03	14 55 18.0	0.1	62.01	156.41	1	6	10.3
14	20.02	20 17 40.9	0.1	61.95	156.31	1	6	10.4	34	25.03	15 57 47.2	0.1	62.08	156.67	1	6	10.6
15	20.02	20 32 14.7	0.1	61.97	156.67	1	6	10.3	35	25.03	17 07 16.8	0.1	61.92	156.08	1	6	10.5
16	21.02	04 18 05.2	0.1	62.74	157.27	1	6	10.4	36	25.03	23 33 22.8	0.1	62.08	156.45	1	6	10.4
17	22.02	05 46 37.6	0.1	61.94	156.28	1	6	10.6	37	26.03	00 30 57.8	0.1	61.92	156.28	1	6	10.4
18	22.02	10 17 44.2	0.1	61.97	156.52	1	6	10.9	38	26.03	02 00 10.2	0.1	62.01	156.39	1	6	10.4
19	23.02	14 06 20.5	0.1	61.98	156.54	1	6	10.4	39	26.03	02 22 58.9	0.2	62.01	156.55	1	6	10.5
20	28.02	03 40 32.0	0.1	62.02	156.46	1	6	10.4	40	26.03	02 31 18.8	0.1	61.95	156.69	1	6	10.3

N₂	Дата,	t_0 ,	δt_0 .	Эпи	центр	δ.	h,	$t_{\rm S}$ - $t_{\rm P}$,	No	Дата,	t_0 ,	δt_0 .	Эпицентр		δ.	h,	$t_{\rm S}$ - $t_{\rm P}$,
	дм	ч мин с	c	φ°, N	λ°, E	КМ	КМ	c		дм	ч мин с	c	φ°, N	λ°, E	КМ	км	c
41	26.03	02 36 20.8	0.3	62.03	156.41	1	6	10.4	64	30.03	15 39 15.1	0.1	61.91	156.55	1	6	10.2
42	26.03	06 39 14.0	0.1	62.01	156.41	1	6	10.3	65	30.03	16 21 47.9	0.1	62.69	156.99	1	6	10.4
43	26.03	08 46 15.2	1	62.06	156.63	1	6	10.4	66	04.04	14 54 31.6	0.2	61.95	156.57	1	6	10.4
44	26.03	09 25 09.8	1	62.08	156.43	1	6	10.4	67	09.04	14 08 23.8	0.1	62.01	156.47	1	6	10.5
45	26.03	16 27 20.1	1	62.02	156.38	1	6	10.1	68	11.04	12 43 25.9	0.1	62.03	156.41	2	6	9.3
46	26.03	17 14 31.0	1	61.97	156.48	1	6	10.2	69	12.04	09 55 55.7	0.1	62.01	156.47	1	6	10.5
47	26.03	20 13 14.7	0.1	61.97	156.39	1	6	10.4	70	03.05	16 01 56.4	0.3	61.96	156.28	1	6	10.4
48	26.03	20 47 00.2	1	61.95	156.50	1	6	10.2	71	09.05	20 10 01.3	0.1	61.98	156.62	1	6	10.5
49	26.03	23 06 53.4	1	62.08	156.61	2	6	10.5	72	14.05	15 43 10.8	0.1	61.97	156.75	1	6	10.3
50	27.03	02 24 45.9	1	61.98	156.46	1	6	10.9	73	31.05	14 00 30.4	0.1	61.97	156.63	1	6	9.8
51	27.03	09 51 21.2	1	62.08	156.37	3	6	10.0	74	01.06	03 04 55.0	0.4	61.95	156.49	3	6	9.5
52	27.03	10 02 11.8	1	61.95	156.39	2	6	10.5	75	02.06	00 41 27.1	0.1	62.06	156.59	1	6	10.4
53	27.03	11 37 43.3	1	62.03	156.25	1	6	10.7	76	02.06	22 22 21.6	0.3	62.08	156.32	1	6	10.0
54	28.03	00 14 26.5	1	62.00	156.40	1	6	10.4	77	03.06	14 33 46.0	0.1	61.98	156.54	1	6	10.1
55	28.03	03 46 00.2	1	62.06	156.30	1	6	10.2	78	03.06	16 48 59.0	0.1	62.00	156.44	1	6	9.8
56	28.03	13 52 53.8	0.1	62.01	156.38	1	6	10.1	79	04.06	11 34 38.5	0.2	62.03	156.41	1	6	10.7
57	28.03	15 56 46.8	0.1	62.01	156.35	1	6	10.1	80	04.06	12 07 51.2	0.1	62.08	156.67	1	6	10.6
58	28.03	16 21 35.0	0.1	61.97	156.47	1	6	10.8	81	04.06	13 09 05.3	0.1	62.10	156.20	1	6	10.0
59	28.03	16 42 02.6	0.1	62.04	156.32	1	6	10.3	82	05.06	03 58 04.7	0.1	62.07	156.45	1	6	10.3
60	29.03	02 21 20.3	0.1	62.05	156.72	2	6	10.3	83	05.06	09 13 42.7	0.1	61.90	156.30	1	6	10.5
61	29.03	09 58 14.0	0.1	61.97	156.48	1	6	10.2	84	26.06	11 16 19.0	0.4	61.83	156.01	3	6	10.3
62	29.03	16 46 55.1	0.1	62.06	156.29	1	6	10.0	85	26.06	16 18 41.5	0.3	62.08	156.04	2	6	9.0
63	29.03	17 39 04.3	0.1	61.99	156.61	1	6	10.0	86	21.07	08 22 40.2	0.1	61.99	156.53	1	6	9.9

Как видно из рис. 3, землетрясения в рое располагаются компактной группой, вытянутой в широтном направлении. Длина зоны составляет примерно 60–80 км, ширина – 10–15 км.

Согласно [6], важнейшим структурным элементом этого района является Верхнесугойская кайнозойская впадина, приуроченная к Буксундинскому глубинному разлому, имеющему северо-восточное простирание. Впадина входит в восточный отрезок Охотско-Анадырской рифтогенной системы. По геолого-геофизическим данным впадина возникла в результате сбросово-сдвиговых движений по разломам. Она заполнена угленосной тектонической массой, ледниковыми отложениями и вулканическими пеплами, общей мощностью свыше 200 м. Очаговая область землетрясений пространственно тяготеет к юго-восточному углу впадины, где вертикальная амплитуда смещений по безымянному разлому составляет более 200 м. По геологическим данным большинство разломов северо-восточного простирания характеризуется левосторонним сдвигом.

Литература

- 1. Гунбина Л.В., Лещук Н.М., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии в 1997 году. Обнинск: ФОП, 2003. С. 146–150.
- 2. **Тресков А.А.** Интерпретация наблюдений над близкими землетрясениями // Вопросы сейсмичности Сибири (Тр. ИЗК АН СССР; Вып. 18). Новосибирск: Наука, 1964. С. 109–111.
- 3. Андреев Т.А. Расчет на ЭВМ параметров слабых землетрясений // Сейсмические процессы на Северо-Востоке СССР. – Магадан: СВКНИИ, 1984. – С. 116–127.
- 4. Гунбина Л.В., Лещук Н.М. (отв. сост.). Северо-Восток России (См. раздел IV (Каталоги землетрясений) в наст. сб. на CD).
- 5. Левина В.И., Лепская Т.С. (отв. сост.), Антипова О.Г., Бахтиарова Г.М., Зенина С.А., Кобзева А.А., Кривогорницына Т.М., Митюшкина С.В., Пилипенко Л.В., Шевченко Н.А. Камчатка и Командорские острова (См. раздел IV (Каталоги землетрясений) в наст. сб. на CD).
- 6. **Геология СССР.** Т. ХХХ. Северо-Восток СССР. Книга 1. Геологическое описание. М.: Недра, 1970. 548 с.