КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Н.А. Давыдова, М.И. Рудик, Е.Н. Дорошкевич, Д.А. Сафонов,

Р.Г. Гуреев, О.В. Микрюкова

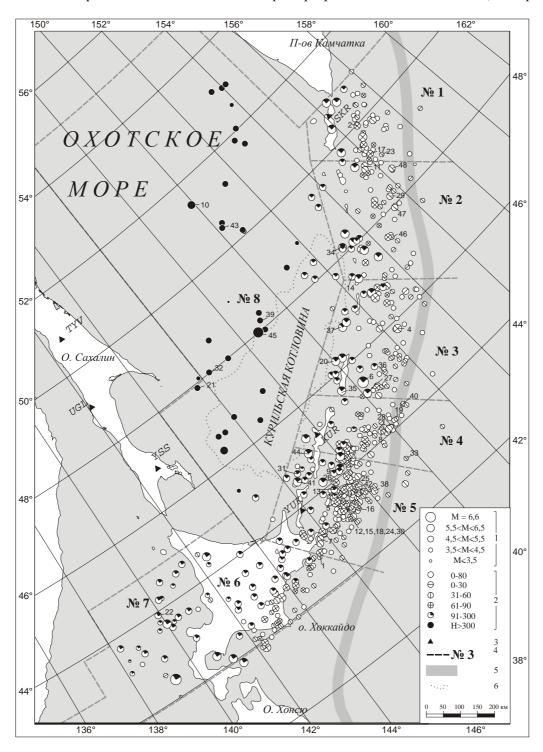
В 1998 г. на территории Курильских островов работали три сейсмические станции Сахалинской опытно-методической сейсмологической партии (СОМСП): «Курильск», «Северо-Курильск» и «Южно-Курильск» (табл. 1). Для определения параметров землетрясений региона дополнительно привлекались инструментальные данные сейсмических станций Сахалина [1] и Приамурья [2], а также бюллетени ОМЭ ОИФЗ РАН [3], ЈМА, Национального информационного центра по изучению землетрясений (NEIC, США), ISC [4]. Методика обработки данных и схема деления региона на отдельные сейсмоактивные районы остались без изменений [5–15].

Таблица 1. Сейсмические станции Курило-Охотского региона, работавшие в 1998 г., и их параметры

№	Стані			Дата	Коо	рдинат	Ы	Аппаратура			
	Название	Ко	Д	открытия	φ°, N	λ°, E	h,	Тип	Компо-	$V_{ m max}$ /	$\Delta T_{ m max}$,
		межд.	рег.				M	прибора	нента	чувствит-сть	С
1	Северо-	SKR	СВК	01.03.1958	50.67	156.11	22	СКМ-3	N, E, Z	20000	0.36-0.65
	Курильск								N, E, Z	10000	0.36-0.65
									N, E, Z	5000	0.36-0.65
								СКД	N, E, Z	1000	0.20-20.0
									N, E, Z	500	0.20-18.0
									N, E, Z	200	0.20-16.0
								СКД-КПЧ	N, E, Z	50	0.2 - 19.0
								Велосиграф C5C	N, E, Z	10.0 c	0.045–4.6
									N, E, Z	1.0 c	0.085-4.6
								ОСП-2М	N, E, Z	$0.04 c^{2}$	0.020-2.0
								ССРЗ-М	N	$0.0019 c^{2}$	0.5-18.0
									E	$0.0022 c^2$	3.0-20.0
									Z	$0.0024 c^{2}$	0.5-20.0
								CM3	N, E, Z	25.0	0.011-0.11
									N, E, Z	1.0	0.011-0.11
								УБОПЭ-2	N, E	33.0	0.05-3.7
								CMP-2	N, E	7.0	0.05-5.9
								CMP-0	N	1.0	0.05 - 5.0
								СБМ		1.1	0.23-0.27
2	Курильск	KUR	КУР	01.01.1950	45.23	147.87	40	СКМ-3	N, E, Z	20000	0.37-0.68
	закр. 30.10.1961			10.01.1965					N, E, Z	10000	0.37-0.68
	закр. 01.02.1994			05.10.1994					N, E, Z	5000	0.37-0.68
								СКД	N, E, Z	1000	0.2-20.0
									N, E, Z	500	0.2-17.0
									N, E, Z	200	0.2–15.0
								СКД-КПЧ	N, E, Z	20	0.2-15.0
								Велосиграф C5C	N	1.0c	0.045–4.6
									N	10.0c	0.053-4.6
									Z	1.0c	0.044-4.6
									Z	10.0c	0.053-4.6
									E	1.0c	0.047-4.6

No	Стані	1		Дата	Коо	рдинат	Ы		Ап	паратура	
	Название	Кс	Д	открытия	φ°, N	λ°, E	h,	Тип	Компо-	$V_{ m max}$ /	$\Delta T_{ m max}$,
		межд.	рег.				M	прибора	нента	чувствит-сть	c
									E	10.0c	0.053-4.6
								ОСП-2М	N, E	$0.045c^{2}$	0.015-1.1
									Z	$0.045 c^2$	0.013-2.2
								СБМ		1.1	0.25
3	Южно-	YUK	ЮКР	01.10.1960	44.03	145.86	28	СКМ-3	N, E, Z	10000	0.25-0.5
	Курильск			05.10.1994					N, E, Z	5000	0.25-0.5
	закр. 01.02.1994			03.08.1996							
	закр. 08.11.1995										
									N, E, Z	2500	0.25 - 0.5
								СКД	N, E, Z	1000	0.2 - 20.0
									N, E, Z	500	0.15-17.0
									N, E, Z	200	0.15-17.0
								CCP3-M	N	$0.0018 c^{2}$	0.5 - 18.0
									E	$0.0019 c^2$	3.0-20.0
									Z	$0.0021 c^2$	0.5 - 20.0
								AC3	N	$0.0541 c^{2}$	0.06 - > 1
									E	$0.0590 c^2$	0.07 - > 1
									Z	0.0574 c ²	0.05 - 0.09
								Велосиграф	N, E, Z	10.0c	0.015-4.6
								C5C			
									N, E, Z	1.0c	0.015-4.6

Примечание. Сейсмографы C5C, велосиграфы C5B, акселерографы ОСП и ССРЗ работают в ждущем режиме регистрации.


В 1998 г. определены параметры 667 Курило-Охотских землетрясений с $MLH \ge 4.0$ ($K_C \ge 9$), из них для 376 удалось оценить глубину гипоцентра [16]. Карта их эпицентров представлена на рис. 1.

В качестве общей характеристики региона рассмотрим распределение землетрясений по глубине гипоцентров, представленное в табл. 2.

Таблица 2. Распределение землетрясений с известной глубиной гипоцентра по интервалам глубины h

$h_1 - h_2$,	N	$h_1 - h_2$,	N	$h_1 - h_2$,	N
KM		KM		KM	
0 - 10	_	201 - 210	6	401 - 410	1
11 - 20	1	211 - 220	4	411 - 420	_
21 - 30	13	221 - 230	5	421 - 430	1
31 - 40	41	231 - 240	1	431 - 440	2
41 - 50	39	241 - 250	2	441 - 450	1
51 - 60	53	251 - 260	2	451 - 460	2
61 - 70	36	261 - 270	1	461 - 470	_
71 - 80	19	271 - 280	2	471 - 480	1
81 - 90	16	281 - 290	1	481 - 490	_
91 - 100	14	291 - 300	1	491 - 500	1
101 - 110	15	301 - 310	1	501 - 510	4
111 - 120	10	311 - 320	2	511 - 520	2
121 - 130	13	321 - 330	_	521 - 530	_
131 - 140	13	331 - 340	2	531 - 540	_
141 - 150	10	341 - 350	_	541 - 550	_
151 - 160	12	351 - 360	1	551 - 560	3
161 - 170	2	361 - 370	2	561 - 570	_
171 - 180	4	371 - 380	1	571 - 600	_
181 - 190	3	381 - 390	4	601 - 650	_
191 - 200	4	391 - 400	1	651 – 679	1

Из нее следует, что почти 54% землетрясений с известной глубиной очага имеют $h \le 80$ км, при этом максимальное число землетрясений (n = 169) зарегистрировано в слое h = 31 - 70 км. Реально мелкофокусных землетрясений ($h \le 80$ км) было значительно больше (свыше 490), но именно для таких гипоцентров оценить глубину наиболее сложно. Самое глубокое землетрясение с $h = 679 \pm 8$ км реализовалось в Охотском море 9 февраля в $03^h 02^m$ с MSH = 6.2 (10 на рис. 1).

Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона за 1998 г.

1 — магнитуда MLH ($h \le 80$ км), MSH (h > 80 км); 2 — глубина h гипоцентра, км; 3 — сейсмическая станция; 4 — граница и номер района; 5 — ось глубоководного Курило-Камчатского желоба; 6 — изолиния на уровне h = -3000 м, оконтуривающая глубоководную Курильскую котловину. Числа возле эпицентров — номера землетрясений в соответствии с графой 1 регионального каталога [16].

Суммарная сейсмическая энергия, выделившаяся в очагах землетрясений в 1998 г., равна ΣE =2.69·10¹³ Дж для мелкофокусных землетрясений с h ≤80 км (табл. 3) и 66.32·10¹³ Дж – для землетрясений с h>80 (табл. 4), что меньше таковой в 1997 г. (11.67·10¹³ Дж и 82.58·10¹³ Дж соответственно [15]): т.е. для мелкофокусных землетрясений энергия уменьшилась в 4.3 раза, для остальных – в 1.2 раза. Наибольшее количество сейсмической энергии высвободилось в очагах глубоких землетрясений в Охотском море, сильнейшее (МЅН=6.6) из которых произошло 29 ноября в $17^{\rm h}13^{\rm m}$ на глубине h=386 км (45 на рис. 1,2). Землетрясение (6) такой же магнитуды зарегистрировано в Симушир-Урупском районе 30 января в 17^h01^m на глубине h=109 км. Оно ощущалось в Южно-Курильске (Δ =74 км), а также в Японии с интенсивностью сотрясений в 2 балла. Всего в регионе отмечено 86 ощутимых землетрясений [16]. Распределение их по районам и интервалам глубин гипоцентров приведено в табл. 5. В нее не вошли девять землетрясений с неизвестной глубиной очага, шесть из которых (30.03 в $02^{\rm h}39^{\rm m}$ с $K_{\rm C}=9$, $I_{\rm i}=I$ JMA по шкале [17]; 01.07 в $12^{\rm h}19^{\rm m}$ с $K_{\rm C}=9$, $I_{\rm i}=I$ JMA; 15.07 в $10^{\rm h}26^{\rm m}$ с $K_{\rm C}=9$, $I_{\rm i}=I$ JMA; 05.09 в $23^{\rm h}03^{\rm m}$ с $K_{\rm C}$ =10, $I_{\rm i}$ =I JMA; 09.12 в 21 $^{\rm h}$ 30 $^{\rm m}$ с $K_{\rm C}$ =9.5, $I_{\rm i}$ =II JMA; 28.12 в 06 $^{\rm h}$ 49 $^{\rm m}$ с $K_{\rm C}$ =9.5, $I_{\rm i}$ =I JMA) произошли в районе о. Хоккайдо и ощущались в Японии, два – в районе о. Шикотан (16.02 в $12^{h}11^{m}$ с $K_{C}=9.5$, $I_{i}=3$ балла по шкале [18]; 20.02 в $18^{h}55^{m}$ с $K_{C}=9$, $I_{i}=4$ балла на расстоянии 80 и 35 км, соответственно) и одно (30.03 в $10^{\rm h}40^{\rm m}$ с $K_{\rm C}$ =9.5) – в 100 км от г. Северо-Курильск $(I_i=1-2$ балла) [16].

Таблица 3. Распределение числа коровых землетрясений по магнитудам *MLH* и суммарная сейсмическая энергия ΣE по районам

№	Район	1.0	MLH						$\Sigma E \cdot 10^{13}$,
		4.0	4.5	5.0	5.5	6.0	6.5		Дж
1	Парамуширский	30	14	3	1	_	_	48	0.14
2	Онекотан-Матуанский	25	14	4	1	_	_	44	0.21
3	Симушир-Урупский	34	24	4	1	1	_	64	1.19
4	Северо-Итурупский	64	36	4	_	_	_	104	0.13
5	Кунашир-Шикотанский	126	51	13	_	1	_	191	0.93
6	Район о. Хоккайдо	24	12	3	_	_	_	39	0.09
7	Японское море	2	1	_	_	_	_	3	0.00
8	Охотское море	_	_	_	_	_	_	_	
	Всего:	305	152	31	3	2	_	493	2.69

Таблица 4. Распределение числа глубокофокусных землетрясений по магнитудам MSH и суммарная сейсмическая энергия ΣE по районам

№	Район			M.	SH			N_{Σ}	$\Sigma E \cdot 10^{13}$,		
		4.0	4.5	5.0	5.5	6.0	6.5		Дж		
	<i>h</i> >80 км										
1	Парамуширский	_	_	1	5	1	_	7	0.75		
2	Онекотан-Матуанский	_	_	4	7	5	_	16	1.87		
3	Симушир-Урупский	_	_	5	9	4	1	19	20.40		
4	Северо-Итурупский	1	_	5	1	_	_	7	0.05		
5	Кунашир-Шикотанский	4	3	9	11	3	_	30	0.71		
6	О. Хоккайдо	6	1	11	14	1	_	33	0.61		
7	Японское море	5	5	6	4	1	1	22	17.95		
8	Охотское море	3	9	21	4	1	2	40	23.98		
	Всего:	19	18	62	55	16	4	174	66.32		

Примечание. При составлении таблиц 3, 4 величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов $K_{\rm C}$ для землетрясений с $h \le 80$ км и из магнитуд MSH с h > 80 км по следующим соотношениям: $MLH = (K_{\rm C} - 1.2)/2$ и MLH = (MSH - 1.71)/0.75. Для второго соотношения вводилась поправка за глубину очага.

Механизмы очагов определены для 48 землетрясений с $MLH \ge 4.1$ (табл. 6, рис. 2), 31 из них относятся к мелкофокусным ($h \le 80$ км), 11 - к промежуточным (h = 81 - 300 км), 6 - к глубоко-

фокусным (h>300 км) [19]. Анализ каталога механизмов очагов землетрясений позволяет установить характер напряженного состояния среды и типичные сейсмодислокации по районам в трех интервалах глубины (табл. 7, 8).

Таблица 5. Распределение землетрясений по районам в разных интервалах глубин с указанием для каждого интервала h_1 – h_2 следующих величин: суммарного числа землетрясений N_{Σ} , числа ощутимых из них $N_{\text{ощут}}$, значения максимальной интенсивности сотрясений $I_{\text{i max}}$, величины максимальной зарегистрированной магнитуды M_{max}

			_		1	1	
№	Районы	$h_1 - h_2$,	N_{Σ}	$N_{ m outyr}$	$I_{\rm i\; max}$	М	max
		KM		, and the second		MLH	MSH
							(MSHA)
1	Парамуширский	0–30	2	_	_	-	4.9
		31–80	16	5	3–4	5.3	6.0
		81-145	7	_	_	_	(6.0)
2	Онекотан- Матуанский	0-30	2	_	_	4.1	_
	-	31–80	24	2	2–3	5.3	6.0
		81–226	16	_	_	5.2	(6.0)
3	Симушир- Урупский	0–30	2	_	_	4.6	5.8
		31–80	26	2	4	5.8	6.3
		81-162	19	2	3	6.0	6.6
4	Северо- Итурупский	0–30	3	_	_	4.5	5.4
	1 213	31-80	31	1	3	5.3	5.6
		81–157	7	_	_	_	5.6
5	Кунашир- Шикотанский	0–30	_	_	_	_	_
	•	31–80	64	28	6	5.8	6.0
		81-220	30	6	III	4.6	5.8
6	О. Хоккайдо	0–30	_	-	_	_	_
		31-80	26	21	III	4.8	6.2
		81-221	33	8	I	_	5.8
7	Японское море	0–30	1	_	_	_	_
	•	31-80	1	1	II	3.5	_
		81–317	22	1	I	_	(6.6)
8	Охотское море	0–30	_	_	_	_	_
	-	31-80	_	_	_	_	_
		81-679	40	_	_	5.5	6.6

Примечание. Интенсивность сотрясений $I_{\rm i~max}$ вписана арабскими и римскими цифрами по шкалам MSK-64 [15] и JMA [16] соответственно.

Таблица 6. Номера землетрясений с известным механизмом очага по районам и интервалам глубин h

№	Район		Номер эпицентра на рис. 1						
			$h_1\!\!-\!h_2$, км						
		0-30	31–80	81–300	>300	N_{Σ}			
1	Парамуширский		2, 17, 23			3			
2	Онекотан-Матуанский		11, 29, 46, 47, 48	14, 34		7			
3	Симушир-Урупский	36	4, 27	6, 20, 35, 37		7			
4	Северо-Итурупский	40	8, 19, 28, 33			5			
5	Кунашир-Шикотанский		1, 3, 5, 7, 12, 13, 15, 16,	9, 31, 41, 44		19			
			18, 24, 25, 26, 30, 38, 42						
6	Район о. Хоккайдо					0			
7	Японское море			22		1			
8	Охотское море				10, 21, 32, 39, 43, 45	6			
	Всего	2	29	11	6	48			

В **Парамуширском районе** (№ 1) заметно увеличилась сейсмическая активность: зарегистрировано N=55 землетрясений с $K_C \ge 9$ [16] против N=38 в 1997 г. [15], т.е. в 1.4 раза больше. 48 землетрясений — мелкофокусные ($h \le 80$ км), их суммарная сейсмическая энергия в 7 раз превысила уровень энергии в 1997 г. Самое сильное (MLH=5.3) из них (17 на рис. 1, 2)

произошло 16 марта в $16^{\rm h}41^{\rm m}$ на глубине h=64 км. Максимальный макросейсмический эффект отмечен при землетрясении (2), зарегистрированном 11 января в $09^{\rm h}09^{\rm m}$ на глубине h=69 км с MLH=4.9, интенсивность сотрясений составила 3–4 балла в г. Северо-Курильске (Δ =88 км). В интервале глубин h=87–145 км зарегистрировано 7 землетрясений. Самое сильное (MSHA=6.0) из них произошло 5 февраля в $06^{\rm h}48^{\rm m}$ на глубине h=131 км [16].

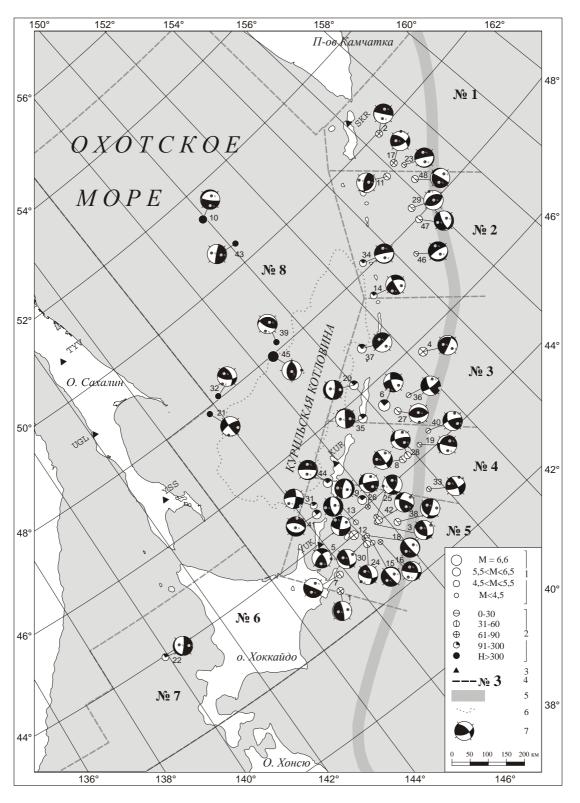


Рис. 2. Карта механизмов очагов землетрясений Курило-Охотского региона за 1998 г.

1-6 соответствуют рис. 1; 7 – диаграмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия.

Таблица 7. Пространственно-энергетическое распределение сейсмодислокаций*

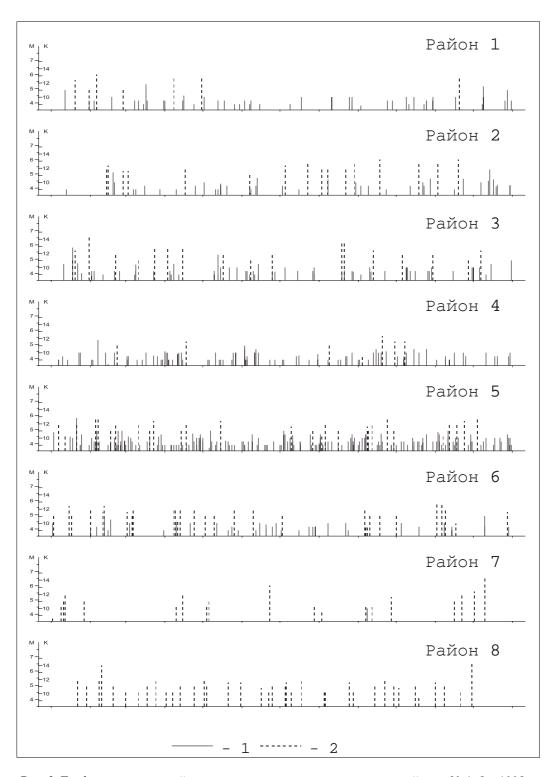
No	$h_1 - h_2$,		Магниту	уда: <i>MLH</i> (<i>h</i> ≤80 км), <i>MSI</i>	Н (h≥81 км)		
	KM	4.0	4.5	5.0	5.5	6.0	6.5
1	31-80		взрез	пологий надвиг	взброс		
2	31–80		взброс, взрез, пологий надвиг	взброс	взрез		
	81-300			сдвиг	взрез		
3	0-30	сдвиг					
	31-80				взброс	пологий	
						надвиг	
	81-300			сдвиг	сброс,	пологий	
					пологий надвиг	надвиг	
4	0-30		сдвиг				
	31-80		пологий надвиг, сдвиг	взброс	сдвиг		
5	31-80	взрез,	взброс, сброс, взброс,	пологий надвиг, поло-		сдвиг	
		взброс	взрез, взброс, взброс,	гий надвиг, сдвиг,			
			взброс	взброс, взброс			
	81-300			сдвиг	сброс, взрез	взрез	
7	81-300				пологий надвиг		
8	h>300			сдвиг, пологий надвиг	взброс, взброс	взрез	взброс

^{*} Классификция по типу механизма (сейсмодислокации) осуществлена по величине углов наклона к горизонту оси промежуточного напряжения (PLN) и нодальных плоскостей (DP1, DP2): сдвиги – $PLN \ge 45^\circ$; сбросы и взбросы – $PLN < 45^\circ$, $20^\circ < DP1$; $DP2 < 70^\circ$; взрезы – $PLN < 45^\circ$, $DP1 \ge 70^\circ$, $DP2 \le 20^\circ$.

Таблица 8. Осредненная ориентация тектонических напряжений и тип подвижки в трех интервалах глубин в каждом районе

№	Район	$h_1 - h_2$,	Напряжения				Тип		
		KM		Τ	N		P		подвижки
			PL	AZM	PL	AZM	PL	AZM	
1	Парамуширский	31-80	64	30	24	185	09	278	взброс
2	Онекотан-Матуанский	31-80	62	316	12	74	24	169	взброс
	-	81-300	47	317	28	82	30	184	взброс
3	Симушир-Урупский	0-30	04	150	64	249	26	58*	сдвиг
		31-80	60	267	28	68	09	162	взброс
		81-300	32	92	60	274	00	183	сдвиг
4	Северо-Итурупский	0-30	39	164	46	311	17	59	сдвиг
	1 717	31-80	68	00	25	179	00	88	взброс
5	Кунашир-Шикотанский	31-80	58	336	18	218	20	110	взброс
		81-300	01	178	14	90	74	273	сброс
7	Японское море	81-300	34	131	10	228	54	332*	пологий надвиг
8	Охотское море	>300	68	120	12	356	17	262	взброс

^{*} Ориентация тектонических напряжений по единственному решению.


График развития во времени сейсмического процесса по районам в течение 1998 г. представлен на рис. 3.

Для трех землетрясений (2, 17, 23) определен механизм очага. Для землетрясений (2 и 17) система напряжений характеризуется преобладающим напряжением сжатия, что определило тип подвижки: взброс и сдвиго-надвиг. Очаг землетрясения (23), произошедшего на глубине h=34 км, подвергся воздействию растягивающих напряжений, что определило тип подвижки – взрез (табл. 6, 7).

Сейсмический процесс, как следует из рис. 3, был равномерным в этом районе в течение года для мелкофокусных землетрясений, а землетрясения с h>80 км почти все реализовались в первой трети года.

В Онекотан-Матуанском районе (N2) число (N=44) мелкофокусных землетрясений с $K_C \ge 9$ [16] соответствует практически числу землетрясений в 1997 г., но их суммарная сейс-

мическая энергия в 2 раза меньше, чем в 1997 г. [15]. Магнитуда сильнейшего землетрясения (47) района, произошедшего 13 декабря в $13^{\rm h}17^{\rm m}$ на глубине h=42 км, составила MLH=5.3. Второе по величине землетрясение (11), зарегистрированное 18 февраля в $09^{\rm h}13^{\rm m}$ на глубине h=49 км с MLH=5.1, ощущалось в г. Северо-Курильске (Δ =166 км) с интенсивностью сотрясений 2–3 балла. В слое h=81–226 км было зарегистрировано 16 землетрясений [16]. Два из них имели магнитуду MSHA=6.0: первое произошло 17 сентября в $04^{\rm h}46^{\rm m}$ на глубине h=140 км, второе – 18 ноября в $23^{\rm h}46^{\rm m}$ на глубине h=108 км.

Рис. 3. Графики развития сейсмического процесса во времени для районов № 1–8 в 1998 г.

1 — землетрясения с глубиной очага $h{\le}80$ км; 2 — землетрясения с глубиной очага $h{>}80$ км.

Для 7 землетрясений определены механизмы очагов [19]. Пять из них (11, 29, 46–48) про-изошли на глубине h=31–80 км, и два (14, 34) — на глубине h=155 и h=165 км соответственно (табл. 6, 7). Очаги землетрясений (11, 29, 48) находились под преимущественным воздействием сжимающих напряжений, тип подвижки — взброс и надвиг. Систему напряжений для землетрясений (46, 47) характеризует действие преобладающего напряжения растяжения, тип подвижки — взрез. В очагах глубокофокусных землетрясений (14, 34) преобладало близгоризонтальное напряжение растяжения. Характер подвижки — сброс, сбросо-сдвиг.

Сейсмический процесс был неравномерным в течение года (рис. 3): мелкофокусных землетрясений почти не было в январе и марте, наибольшее их число произошло в декабре. Глубокофокусные землетрясения происходили в основном во втором полугодии.

В Симушир-Урупском районе (№ 3) зарегистрировано 83 землетрясения с $K_C \ge 9$ [16], что почти в 1.3 раза меньше, чем в 1997 г. [15]. Суммарная сейсмическая энергия 64 мелкофокусных землетрясений осталась практически на уровне таковой в 1997 г. Среди них можно отметить землетрясение (4), зарегистрированное 17 января в $10^h 39^m$ (MLH=5.8, h=68 км) с макросейсмическим эффектом в 2 балла в г. Курильске ($\Delta=360$ км). Заметный (MLH=5.3) толчок (27) отмечен 12 мая в $17^h 01^m$ с h=57 км, он ощущался в г. Курильске ($\Delta=202$ км) с интенсивностью 4 балла и в пос. Южно-Курильск ($\Delta=391$ км) -2-3 балла.

На глубинах h=81-162 км зарегистрировано 19 землетрясений [16]. Самое сильное (MSH=6.6) из них (6), произошедшее 30 января в $17^{\rm h}01^{\rm m}$ на глубине h=109 км, с макросейсмическим эффектом 2 балла в пос. Южно-Курильск ($\Delta=74$ км) и в Японии, оказалось одним из двух сильнейших землетрясений региона.

В Симушир-Урупском районе определены механизмы очагов семи землетрясений [19], три из них (4, 27, 36) – мелкофокусные (h=22-68 км), четыре (6, 20, 35, 37) – с промежуточной глубиной очага (h=109-156 км). Очаги землетрясений (4, 27) характеризуются близгоризонтальными напряжениями сжатия и более крутыми растягивающими напряжениями, сейсмодислокации типа пологого надвига в (4) и взброса в (27). Землетрясение (36) произошло в условиях близгоризонтального напряжения растяжения. Подвижка в очаге имела характер сдвига. В интервале глубин h>81 км преобладали близгоризонтальные напряжения растяжения. В очаге землетрясения (6) наблюдался сдвиг, в очаге (20) – взрез, для очагов (35, 37) – подвижка по близгоризонтальной плоскости типа пологого надвига (76, 76).

Сейсмический процесс был в течение года равномерным (рис. 3).

В Северо-Итурупском районе (№ 4) зарегистрировано 104 землетрясения с глубиной гипоцентра $h \le 80$ км и 7 землетрясений с h = 81 - 157 км [16], что соответствует уровню числа землетрясений в 1997 г. [15]. Суммарная сейсмическая энергия мелкофокусных землетрясений уменьшилась в 32 раза: самое сильное (MLH = 5.3) землетрясение (8) произошло 6 февраля в $01^{\rm h}05^{\rm m}$ на глубине h = 45 км.

Число толчков с h>80 км увеличилось незначительно, но магнитуда землетрясений была выше, чем в 1997 г., в результате сейсмическая энергия более чем на порядок превышает таковую в 1997 г. [15]. Самое сильное (MSH=5.6) землетрясение зарегистрировано 19 сентября в $09^{\rm h}41^{\rm m}$ на глубине h=151 км.

В Северо-Итурупском районе определены механизмы очагов 5 землетрясений (8, 19, 28, 33, 40), гипоцентры всех расположены на глубине h<80 км. Система напряжений в верхнем интервале глубин была неустойчивой. Установлены следующие дислокации: сдвиг в очагах землетрясений (8, 33, 40), пологий надвиг в (19) и взброс в (28).

Сейсмический процесс для мелкофокусных землетрясений был равномерным в течение года, глубокие землетрясения происходили в основном в августе-октябре (рис. 3).

Кунашир-Шикотанский район (№ 5) оказался, как всегда, наиболее сейсмоактивным. Зарегистрировано 191 землетрясение с глубиной гипоцентра $h \le 80$ км и 30 землетрясений с h = 81 - 220 км [16], т.е. почти то же, что и в 1997 г. [15]. Суммарная сейсмическая энергия мелкофокусных землетрясений уменьшилась в 3.2 раза. Самое сильное (MLH = 5.8) из них (5) зарегистрировано 20 января в $15^h 21^m$ на глубине h = 61 км с макросейсмическим эффектом на Шикотане ($\Delta = 20$ км) 6 баллов. Согласно рис. 2, его очаг реализовался в условиях близгоризонтального напряжения сжатия и более крутого напряжения растяжения. Обе возможные плоскости

разрыва ориентированы субмеридионально и имеют крутое падение. По обеим плоскостям произошли взбросовые подвижки. Второе по величине (MLH=4.9) землетрясение (7) зафиксировано 5 февраля в $10^{\rm h}48^{\rm m}$ на глубине h=58 км с макросейсмическим эффектом на Шикотане (Δ =110 км) 5 баллов, в пос. Южно-Курильск (Δ =93 км) - 4-5 баллов. Суммарная сейсмическая энергия землетрясений с h=81-220 км уменьшилась в 22 раза, по сравнению с соответствующей энергией в 1997 г. Сейсмический процесс был равномерным в течение года (рис. 3).

В Кунашир-Шикотанском районе определены механизмы очагов для 19 землетрясений (1, 3, 5, 7, 12, 13, 15, 16, 18, 24–26, 30, 38, 42 на рис. (1, 2) [19], большая часть из которых произошла в верхнем глубинном интервале с h<80 км. В промежуточном интервале h=81–220 км отмечены 4 землетрясения (9, 31, 41, 44). Система напряжений, действующая в верхнем интервале глубин, была неустойчивой, очаги землетрясений характеризуются близкими по значению напряжениями сжатия и растяжения с незначительным преимуществом сжимающих напряжений. Характерные дислокации: пологий надвиг в очагах землетрясений (1, 7), взброс – в (3, 16, 24–26, 30, 38, 42), взрез – в (12, 15, 18), сброс – в (13). В очагах землетрясений в промежуточном интервале глубин преобладали близгоризонтальные напряжения растяжения и более крутые – сжатия. Характерные дислокации: взрез в очагах землетрясений – (9, 44), сдвиг – в (31), сброс – в (41) (табл. 6, 7).

В районе о-ва Хоккайдо (№ 6) сейсмическая активность заметно снизилась: зарегистрировано 39 землетрясений с глубиной гипоцентра $h \le 80$ км и 33 землетрясения с h = 81 - 221 км [16], что в 1.2 раза меньше, чем в 1997 г. [15]. Суммарная сейсмическая энергия мелкофокусных землетрясений уменьшилась в 31 раз, промежуточных — почти в 79. Самое сильное (MLH = 4.8) землетрясение в верхнем интервале глубины произошло 11 февраля в 02^h25^m с h = 71 км. В промежуточном интервале глубин сильнейшее (MSH = 5.8) землетрясение произошло 1 ноября в 19^h13^m на глубине h = 103 км.

В **Японском море** (№ 7) зарегистрировано три землетрясения с глубиной гипоцентра $h \le 80$ км и 22 землетрясения – с h = 81 - 317 км [16], что в 2 раза больше, чем в 1997 г. [15]. Суммарная сейсмическая энергия глубокофокусных землетрясений увеличилась почти в 53 раза. Самым сильным (MSH = 5.4) было землетрясение (22), произошедшее 14 апреля в $07^h 46^m$ на глубине h = 211 км. Для него определен механизм очага: взрез под воздействием близгоризонтального напряжения растяжения и достаточно крутого напряжения сжатия (табл. 6, 7).

В Охотском море (№ 8) зарегистрировано 40 землетрясений с гипоцентрами на глубине h=99-679 км [16]. Их суммарная сейсмическая энергия была наивысшей из всех районов Курило-Охотского региона и превысила в 1.4 раза энергию, высвободившуюся в очагах землетрясений этого района в 1997 г. [15]. Самым сильным (MSH=6.6) оказалось землетрясение (45), зарегистрированное 29 ноября в $17^{\rm h}13^{\rm m}$ на глубине h=386 км. Вторым по величине (MSH=6.2) явилось самое глубокое (h=679 км) землетрясение (10), зарегистрированное 9 февраля в $03^{\rm h}02^{\rm m}$.

В Охотском море определены механизмы очагов для землетрясений (10, 21, 32, 39, 43, 45). Очаги землетрясений (32, 39, 45) характеризуются взбросовыми подвижками, а (21, 43) – сдвиго-надвиговыми под воздействием сжимающих напряжений, кроме землетрясения (10), для которого подвижка — типа взрез (или пологий сброс). Ход сейсмического процесса во времени был равномерным (рис. 3).

Интерпретация данных каталога механизмов очагов [19] позволяет оценить осредненное напряженное состояние среды и выявить характерные типы подвижек в очагах землетрясений Курило-Охотского региона в 1998 г. (табл. 8, 9). В большинстве случаев в земной коре и верхней мантии действовали близгоризонтальные напряжения сжатия и более крутые растягивающие напряжения, кроме Онекотан-Матуанского района, где на глубине h=81-300 км преобладали растягивающие напряжения. Наиболее распространенными были подвижки типа взброс (сброс), сдвиго-надвиг, пологий взброс (надвиг), пологий сброс (взрез).

Анализируя данные каталога [16] основных параметров землетрясений в целом по региону можно отметить, что наибольшая сейсмическая активность, по-прежнему, наблюдалась в районах № 3–5 (Средние и Южные Курильские острова), кроме того, возросла глубокофокусная активность под Японским (№ 7) и Охотским (№ 8) морями (рис. 1, табл. 4).

Коэффициенты графиков повторяемости типа $\lg N = a - bM$ для землетрясений с $h \le 80$ км за 1994—1998 гг. даны в табл. 10.

Таблица 9. Процентное соотношение типов дислокаций в очагах землетрясений Курило-Охотского региона в 1998 г.

Дислокации		Интервал глубин, км								
	0-30 31-80 81-300									
Взброс	_	48%	_	50%						
Взброс Вброс	_	4	19	_						
Сдвиг	100%	14	27	17						
Пологий надвиг	_	17	27	17						
Взрез	_	17	27	16						

Таблица 10. Параметры графиков повторяемости землетрясений Курило-Охотского региона с h≤80 км

Год	Интервал <i>МLН</i>	а	b	Стандартное отклонение $\log N$
1994	4.5-6.5	6.57	0.93	0.30
1995	4.5-6.5	7.06	1.01	0.14
1996	4.5-6.5	6.91	1.06	0.12
1996	4.5–7.0	6.41	0.95	0.18
1997	4.0-6.0	6.47	1.01	0.27
1998	4.0-6.0	7.47	1.23	0.15

Примечание. Расчет параметров графиков произведен с шагом $\Delta MLH = 0.5$.

Литература

- 1. Фокина Т.А., Паршина И.А., Рудик М.И., Дорошкевич Е.Н., Сафонов Д.А., Сен Рак Се, Ким Чун Ун, Микрюкова О.В., Краева Н.В. Сахалин (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Фокина Т.А., Рудик М.И., Паршина И.А., Дорошкевич Е.Н., Бобков А.О., Сафонов Д.А., Микрюкова О.В. Приамурье и Приморье (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за **1998** год / Отв. ред. О.Е. Старовойт. Обнинск: ОМЭ ИФЗ РАН, 1998–1999.
- 4. Bulletin of International Seismological Centre (for 1998). Ньюбери: ISC, 2000.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). М.: Наука, 1989. С. 32–51.
- 6. **Миталева Н.А., Бойчук А.Н.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 7. **Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. М.: Наука, 1996. С. 91–100.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). М.: Наука, 1979. С. 45–58.
- 9. **Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И.** Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. М.: Наука, 1977. С. 67–75.
- 10. **Соловьёв С.Л., Соловьёва О.Н.** Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. − 1967. − № 1. − С. 37–60.
- 11. **Соловьёв С.Л., Соловьёва О.Н.** Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.

- 12. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 13. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 14. **Фокина Т.А.,** Давыдова Н.А., Рудик М.И., Бобков А.О., Брагина Г.И. Курило-Охотский регион // Землетрясения Северной Евразии в 1996 году. М.: ОИФЗ РАН, 2002. С. 110–118.
- 15. **Фокина Т.А., Давыдова Н.А., Рудик М.И., Бобков А.О.** Курило-Охотский регион // Землетрясения Северной Евразии в 1997 году. Обнинск: ФОП, 2003. С. 129–139.
- 16. Поплавская Л.Н., Фокина Т.А., Давыдова Н.А. (отв. сост.), Брагина Г.И., Коваленко Н.С., Пиневич М.В. Курило-Охотский регион (См. раздел IV (Каталоги землетрясений) в наст. сб. на CD).
- 17. **Hisada T., Nakagawa K.** Present Japanese Development in Engineering Seismology and their Application to Building. Japan, 1958.
- 18. **Медведев С.В.** (**Москва**), **Шпонхойер В.** (**Иена**), **Карник В.** (**Прага**). Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.
- 19. **Рудик М.И.** (отв. сост.) Курило-Охотский регион (См. раздел V (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).