## Северный, Восточный и Центральный Казахстан

## Н.Н. Михайлова, И.Н. Соколова

В настоящей статье приводятся данные о сейсмичности территории Казахстана, за исключением районов Северного Тянь-Шаня, расположенных в его южной и юго-восточной части, описываемых в отдельной статье [1]. В 1997 г. на этой территории были зарегистрированы землетрясения в районах Центрального и Восточного Казахстана [2]. В 1998 г. обнаружена группа очагов слабых землетрясений в Северном Казахстане, в связи с этим изменено название статьи: вместо «Центральный и Восточный Казахстан» в [2,3] принято – «Северный, Центральный и Восточный Казахстан».

В состав сейсмической сети Национального ядерного центра Республики Казахстан (НЯЦ РК) в 1998 г. входили трехкомпонентные широкополосные станции «Актюбинск», «Боровое», «Курчатов», «Маканчи», «Подгорное», «Талгар», а также сейсмические группы «Курчатов-Крест», «Чкалово», «Восточное», «Зеренда» [3]. Методика обработки данных в ретроспективном режиме не изменилась [2–4].

В Северном Казахстане впервые зарегистрированы землетрясения в районе обсерватории «Боровое». Отметим, что информация о каких-либо землетрясениях в этом месте отсутствует в имеющихся каталогах территории Казахстана. Поэтому, несмотря на то, что эти землетрясения имеют небольшие энергетические классы, представляется важным включение их в настоящую статью и соответствующий каталог [5], составленный в редакции сборника. Всего было зафиксировано 5 местных землетрясений, параметры которых приведены в табл. 1. Одно из них, произошедшее 27 июля в  $17^{h}39^{m}$  с  $K_{P}$ =6.9, ощущалось с интенсивностью сотрясений в 4 балла в пос. Боровое ( $\Delta$ =10 км) и в г. Щучинске ( $\Delta$ =10 км). Оно имело 2 форшока: 26 июля в  $07^{h}41^{m}$  с  $K_{P}$ =5.3 и 27 июля в  $14^{h}32^{m}$  с  $K_{P}$ =5.4, т.е. энергетическая ступень между уникально слабым «главным толчком» и максимальным форшоком составила  $\Delta K_{\phi}$ =1.5. Кроме того, зарегистрированы и 2 афтершока: первый с  $K_{P}$ =2.2 через 5 минут после «главного толчка», второй – 29 июля в  $10^{h}55^{m}$  с  $K_{P}$ =3.3, и, следовательно, разница в энергетических классах с максимальным афтершоком равна  $\Delta K_{a}$ =3.6. Афтершоки были локализованы по большебазовой группе «Боровое» (станции «Чкалово», «Зеренда», «Восточное», «Боровое»).

| № | Дата, | $t_0, \delta t_0$ |     |      | δ <i>t</i> <sub>0</sub> , Эпицентр |       |       | Элл              | ипс оши          | бок   | h,  | δh, | MPVA | $K_{\mathrm{P}}$ |
|---|-------|-------------------|-----|------|------------------------------------|-------|-------|------------------|------------------|-------|-----|-----|------|------------------|
|   | Д М   | ч                 | мин | с    | с                                  | φ°,N  | λ°,Ε  | S <sub>maj</sub> | S <sub>min</sub> | AZM,  | КМ  | КМ  |      |                  |
|   |       |                   |     |      |                                    |       |       | КМ               | КМ               | град. |     |     |      |                  |
| 1 | 26.07 | 07                | 41  | 57.0 | 0.3                                | 53.00 | 70.15 | 2.5              | 2.3              | 91.5  | 3/к |     | 2.4  | 5.3              |
| 2 | 27.07 | 14                | 32  | 00.1 | 0.2                                | 52.99 | 70.18 | 1.8              | 1.4              | 5.2   | 7   | 3   | 2.2  | 5.4              |
| 3 | 27.07 | 17                | 39  | 13.0 | 0.4                                | 52.99 | 70.19 | 4.6              | 3.3              | 4.3   | 6   | 4   | 2.9  | 6.9              |
| 4 | 27.07 | 17                | 44  | 57.9 |                                    | 52.99 | 70.19 |                  |                  |       | 3/к |     | 1.2  | 2.2              |
| 5 | 29.07 | 10                | 55  | 01.5 |                                    | 52.99 | 70.19 |                  |                  |       | 3/к |     | 1.6  | 3.3              |

Таблица 1. Параметры землетрясений вблизи курорта «Боровое»

Эти события являются уникальными, поскольку территория Северного Казахстана считалась асейсмичной. Для максимального землетрясения этой группы с  $K_P$ =6.9 на рис. 1 представлены вертикальные компоненты записей цифровыми станциями группы «Боровое» («Боровое», «Восточное», «Зеренда», «Чкалово») и станцией «Курчатов».

В табл. 2 представлены основные параметры землетрясений Восточного Казахстана и прилегающих территорий с  $K_P \ge 9.0$ , где погрешность локализации эпицентров характеризуется эллипсом ошибок:  $S_{maj}$  – большая полуось,  $S_{min}$  – малая, AZM – азимут большой оси. Всего таких событий было зарегистрировано 13. Карта расположения сейсмических станций и эпицентров землетрясений представлена на рис. 2.



*Рис.* 1. Сейсмограммы землетрясения 27 июля с *К*<sub>P</sub>=6.9 по вертикальным компонентам станций «Боровое» (BRVK), «Восточное» (VOS), «Зеренда» (ZRN), «Чкалово» (CHK), «Курчатов» (KUR)

*Таблица 2.* Параметры землетрясений по станциям казахстанской сети НЯЦ РК с *К*<sub>Р</sub>≥9.0

| N⁰ | Дата, | <i>t</i> <sub>0</sub> , |     | $\delta t_0$ , | Эпицентр |       | Эллипс ошибок |                    |                    | h,    | δh, | MPVA | $K_{ m P}$ |       |
|----|-------|-------------------------|-----|----------------|----------|-------|---------------|--------------------|--------------------|-------|-----|------|------------|-------|
|    | Д М   | ч                       | МИН | с              | c        | φ°, N | <b>λ°,</b> Ε  | S <sub>maj</sub> , | S <sub>min</sub> , | AZM,  | КМ  | КМ   |            |       |
|    |       |                         |     |                |          |       |               | КМ                 | КМ                 | град. |     |      |            |       |
| 1  | 07.01 | 16                      | 09  | 15.3           | 1.7      | 44.50 | 80.81         | 9                  | 4                  | 123.5 | 10  | 10   | 4.6        | 10.4  |
| 2  | 22.01 | 16                      | 05  | 50.0           | 2.0      | 48.58 | 84.83         | 18                 | 9                  | 68.6  | 3/к |      | 5.0        | 12.0  |
| 3  | 06.02 | 10                      | 01  | 56.1           | 1.0      | 46.01 | 82.64         | 9                  | 2                  | 107.1 | 15  | 14   | 4.3        | 9.9   |
| 4  | 01.03 | 18                      | 45  | 19.4           | 2.4      | 45.12 | 80.25         | 15                 | 7                  | 99.0  | 17  |      | 4.0        | 10.1  |
| 5  | 08.03 | 10                      | 47  | 23.8           | 2.3      | 44.94 | 80.62         | 16                 | 4                  | 103.0 | 3/к |      | 4.9        | 11.5  |
| 6  | 16.04 | 05                      | 23  | 45.2           | 2.5      | 44.29 | 80.71         | 27                 | 5                  | 81.6  | 3/к |      | 4.8        | 10.4  |
| 7  | 19.05 | 02                      | 37  | 21.0           | 2.0      | 47.54 | 81.70         | 20                 | 7                  | 74.3  | 3/к |      | 4.1        | 9.7   |
| 8  | 16.06 | 02                      | 14  | 53.3           | 2.7      | 44.73 | 81.07         | 15                 | 5                  | 113.5 | 3/к |      | 4.2        | 9.4   |
| 9  | 12.07 | 07                      | 16  | 15.7           | 1.2      | 47.62 | 82.70         | 13                 | 3                  | 93.1  | 3/к |      | 5.3        | 13.6* |
| 10 | 16.08 | 05                      | 53  | 39.8           | 3.5      | 44.89 | 80.99         | 48                 | 7                  | 117.7 | 3/к |      | 4.3        | 10.0  |
| 11 | 31.08 | 16                      | 55  | 44.7           | 5.6      | 44.38 | 81.37         | 28                 | 15                 | 134.0 | 9   |      | 4.1        | 10.1  |
| 12 | 28.10 | 06                      | 50  | 48.1           | 2.7      | 46.55 | 84.12         | 17                 | 5                  | 94.2  | 7   | 9    | 3.9        | 9.7   |
| 13 | 01.11 | 03                      | 56  | 12.0           | 2.9      | 46.93 | 83.73         | 19                 | 10                 | 100.9 | 3/к |      | 3.7        | 9.1   |

Примечание. Знаком \* отмечен класс, определенный как среднее значение по всем сейсмическим станциям НЯЦ РК и ИС МОН РК.

Рассмотрим подробно наиболее сильные события с  $K_P>11.0$ . Таких событий в табл. 2 зарегистрировано и обработано только три (2, 5, 9).

Землетрясение (2) с  $K_P$  =12.0 произошло 22 января в 16<sup>h</sup>05<sup>m</sup> в районе Курчумского хребта, вблизи оз. Зайсан. В пос. Зайсан ( $\Delta$ =134 км) это землетрясение ощущалось с интенсивностью 3–4 балла, а в г. Усть-Каменогорск ( $\Delta$ =232 км) – 3 балла по шкале MSK-64 [6]. Обработка его проведена различными способами. В частности, по данным сейсмической группы «Курчатов-Крест» с помощью F-К-анализа [7] были определены азимут на эпицентр (*AZM*=104.28°) и кажущаяся скорость ( $\nu$ =7.25 км/с), а затем проведена локализация эпицентра (рис. 3). Кроме того, гипоцентр был определен и по сети всех станций НЯЦ РК. Разница между двумя найденными эпицентрами составляет 18 км (рис. 4).



Рис. 2. Карта эпицентров землетрясений исследуемой территории за 1998 г.

1 – сейсмическая станция; 2 – населенный пункт. Коды и названия сейсмических станций: АКТ – «Актюбинск»; BRVK – «Боровое»; CHK – «Чкалово»; KUR – «Курчатов»; MAK – «Маканчи»; PDG – «Подгорное»; TLG – «Талгар»; VOS – «Восточное»; ZRN – «Зеренда».



Рис. 3. Результаты F-К-анализа для землетрясения № 2 по данным группы «Курчатов-Крест»



Рис. 4. Расположение эпицентров землетрясения № 2 и эллипсов ошибок по данным группы «Курчатов-Крест» (меньший эллипс) и сети станций НЯЦ РК

Землетрясение (5) с  $K_{\rm P}$ =11.5 отмечено 8 марта в 10<sup>h</sup>47<sup>m</sup> в районе хр. Джунгарский Алатау. Землетрясение ощущалось в г. Талды-Курган ( $\Delta$ =175 км) с интенсивностью 2–3 балла. Оно не является единственным событием в этом районе за 1998 год. Эпицентры землетрясений (1, 4–6, 8, 10, 11) свидетельствуют о наличии сейсмической активности в Джунгарии.

Землетрясение (9) с  $K_P$ =13.6 произошло 12 июля в 07<sup>h</sup>16<sup>m</sup> в районе хр. Тарбагатай, вблизи сейсмической станции «Маканчи» ( $\Delta$ =105 км). В пос. Зайсан ( $\Delta$ =90 км) оно ощущалось с интенсивностью 3–4 балла. Это сильнейшее землетрясение в Восточном Казахстане после известных Зайсанских землетрясений 1990 г. [8]. Сводка вариантов локализации его гипоцентра и оценки величины даны в табл. 3. Записи по цифровым станциям НЯЦ РК показаны на рис. 5 (вертикальные компоненты).



*Рис.* 5. Сейсмограммы землетрясения 12 июля в 07<sup>h</sup>16<sup>m</sup> с *K*<sub>P</sub>=13.6. по вертикальным компонентам сети станций НЯЦ РК

| Табли | <b>ца 3.</b> Вариан | нты ло | кализации | землетрясен | ния 12 ию | оля по д | цанным | и разных а | гентств |
|-------|---------------------|--------|-----------|-------------|-----------|----------|--------|------------|---------|
|       |                     |        |           |             |           |          |        |            |         |

| Агентство  | $t_0$ ,    | $\delta t_0$ , |       |       | Гипог | центр |     |              | Магнитуда                              | Ис-  |
|------------|------------|----------------|-------|-------|-------|-------|-----|--------------|----------------------------------------|------|
|            | ч мин с    | с              | φ°, N | δφ°   | λ°, E | δλ°   | h,  | $\delta h$ , |                                        | точ- |
|            |            |                | -     |       |       |       | КМ  | КМ           |                                        | ник  |
| НЯЦ РК     | 07 16 15.7 | 1.02           | 47.62 |       | 82.7  |       |     |              | <i>MPVA</i> =5.3, K <sub>P</sub> =13.6 |      |
| MOS        | 07 16 17.5 |                | 47.7  |       | 82.7  |       | 35  |              | <i>Ms</i> =4.5/14, MPSP=5.1/40         | [9]  |
| ISC        | 07 16 14   | 2.3            | 47.63 | 0.026 | 82.88 | 0.035 | 13  | 14           | $Ms=4.5/33, m_b=4.9/102$               | [10] |
|            |            |                |       |       |       |       | 21* | 1.8*         |                                        |      |
| NEIC       | 07 16 16.6 |                | 47.72 |       | 82.88 |       | 33  |              | $Ms=4.5/10, m_b=4.9/69$                | [10] |
| EIDC       | 07 16 13.0 | 0.61           | 47.6  |       | 82.9  |       | 0   |              | $Ms=4.3/11, m_b=4.7/22$                | [10] |
| BJI        | 07 16 16.3 |                | 47.62 |       | 82.88 |       | 30  |              | $Ms=5.1, m_b=4.7$                      | [10] |
| HRVD (для  | 07 16 21.2 | 0.2            | 47.79 | 0.02  | 82.78 | 0.01  | 35  | 1.0          | <i>Mw</i> =5.2                         | [10] |
| центроида) |            |                |       |       |       |       |     |              |                                        |      |

Примечание. Знаком \* помечены h и \deltah по волнам типа pP-P из [10].

Это землетрясение сопровождалось большим числом афтершоков. Поскольку в Восточном Казахстане работала только одна станция «Маканчи» (трехкомпонентная цифровая станция IRIS/GSN), то для большинства афтершоков невозможно было провести локализацию гипоцентров. Только для событий, которые, кроме «Маканчи», зарегистрировали станции «Курчатов» и «Подгорное», удалось получить основные параметры афтершоков. В табл. 4 представлен список афтершоков, обработанных по станции «Маканчи». Для них указаны расчетное время в очаге, разность моментов вступлений Р- и S-волн и энергетический класс  $K_P$ . Для афтершоков, локализованных по сети станций, представлены полные сведения об их параметрах и эллипсах ошибок. К сожалению, эти данные об афтершоковой последовательности не полные из-за перерыва в работе станции «Маканчи» с 18 июля с  $12^h36^m$  по 26 июля в  $10^h56^m$ .

| №  | Дата,        | t <sub>0</sub> ,<br>н мин с | $\delta t$ , | $t_{\rm s}$ - $t_{\rm p}$ | Эпиц<br>«° N | центр<br>λ° Б | $S_{ m maj}$ | $S_{\min}$ | AZM       | <i>h</i> ,<br>км | $\delta h,$ | MPVA | K <sub>p</sub> |
|----|--------------|-----------------------------|--------------|---------------------------|--------------|---------------|--------------|------------|-----------|------------------|-------------|------|----------------|
| 1  | д м<br>12.07 |                             | 1.0          | 12.1                      | $\psi$ , N   | Λ, L<br>92.55 | 10           | 1.0        | <b>01</b> | KM<br>OM         | КM          | 2.0  | 70             |
| 1  | 12.07        | 07 49 54.2                  | 1.0          | 13.1                      | 47.02        | 82.33         | 10           | 1.9        | 02.1      | ЗК               | _           | 5.0  | 7.0            |
| 2  | 12.07        | 08 02 23.2                  |              | 12.0                      |              |               |              |            |           |                  |             |      |                |
| 1  | 12.07        | 08 07 43.4                  |              | 12.9                      |              |               |              |            |           |                  |             |      |                |
| 5  | 12.07        | 08 21 36 4                  | 2.1          | 12.8                      | 17 63        | 82 63         | 19.9         | 27         | 837       | 212              | _           |      | 77             |
| 6  | 12.07        | 08 /0 00 8                  | 2.1          | 12.0                      | +7.0J        | 02.05         | 17.7         | 2.1        | 05.7      | л                |             |      | 69             |
| 7  | 12.07        | 08 52 50 4                  |              | 12.8                      |              |               |              |            |           |                  |             |      | 0.7            |
| 8  | 12.07        | 09 13 56 2                  |              | 13.1                      |              |               |              |            |           |                  |             |      | 56             |
| 9  | 12.07        | 10 03 17 6                  |              | 12.7                      |              |               |              |            |           |                  |             |      | 5.0            |
| 10 | 12.07        | 11 31 12.8                  |              | 13.2                      |              |               |              |            |           |                  |             |      |                |
| 11 | 12.07        | 12 22 34.5                  |              | 12.8                      |              |               |              |            |           |                  |             |      | 5.1            |
| 12 | 12.07        | 12 23 33.7                  | 0.8          | 12.9                      | 47.43        | 82.73         | 8.7          | 1.8        | 93.6      | ЗК               | _           |      | 7.1            |
| 13 | 13.07        | 01 41 31.9                  | 1.2          | 12.9                      | 47.60        | 82.64         | 11.9         | 1.7        | 40.6      | ЗК               | _           | 2.6  | 6.4            |
| 14 | 13.07        | 02 12 57.9                  | 1.2          | 13.2                      | 47.64        | 82.61         | 10.7         | 1.5        | 83.9      | ЗК               | _           |      | 7.2            |
| 15 | 13.07        | 16 19 59.4                  |              | 12.9                      |              |               |              |            |           |                  |             | 2.2  | 5.7            |
| 16 | 13.07        | 18 15 05.9                  |              | 12.9                      |              |               |              |            |           |                  |             |      |                |
| 17 | 13.07        | 18 16 50.6                  |              | 12.8                      |              |               |              |            |           |                  |             |      |                |
| 18 | 14.07        | 10 25 25.2                  |              | 12.9                      |              |               |              |            |           |                  |             |      |                |
| 19 | 14.07        | 15 58 10.7                  |              | 13.5                      |              |               |              |            |           |                  |             |      |                |
| 20 | 14.07        | 17 35 26.9                  |              | 12.6                      |              |               |              |            |           |                  |             |      |                |
| 21 | 15.07        | 00 59 13.7                  |              | 13.7                      |              |               |              |            |           |                  |             |      |                |
| 22 | 15.07        | 01 02 34.4                  |              | 12.7                      |              |               |              |            |           |                  |             |      |                |
| 23 | 16.07        | 08 13 12.9                  |              | 12.9                      |              |               |              |            |           |                  |             |      |                |
| 24 | 16.07        | 08 51 40.2                  |              | 12.9                      |              |               |              |            |           |                  |             |      |                |
| 25 | 16.07        | 18 22 36.6                  |              | 12.7                      |              |               |              |            |           |                  |             |      |                |
| 26 | 17.07        | 01 37 03.7                  | 1.2          | 12.9                      | 47.33        | 82.74         | 17.4         | 2.4        | 102.8     | ЗК               | _           | 2.3  | 7.0            |
| 27 | 17.07        | 10 40 48.0                  |              | 12.9                      |              |               |              |            |           |                  |             |      |                |
| 28 | 18.07        | 07 58 51.9                  |              | 13.2                      |              |               |              |            |           |                  |             |      |                |
|    | Пер          | ерыв в работе               | станці       | ии                        |              |               |              |            |           |                  |             |      |                |
| 29 | 27.07        | 01 34 41.4                  |              | 13.0                      |              |               |              |            |           |                  |             |      |                |
| 30 | 27.07        | 02 37 59.5                  |              | 13.0                      |              |               |              |            |           |                  |             |      |                |
| 31 | 27.07        | 04 49 31.4                  |              | 13.1                      |              |               |              |            |           |                  |             |      |                |
| 32 | 27.07        | 20 12 33.5                  |              | 13.4                      |              |               |              |            |           |                  |             |      |                |
| 33 | 29.07        | 19 16 24.1                  |              | 13.0                      |              |               |              |            |           |                  |             |      |                |
| 34 | 30.07        | 06 58 05.8                  |              | 13.0                      |              |               |              |            |           |                  |             | 2.5  | 6.6            |
| 35 | 30.07        | 21 13 45.8                  |              | 12.9                      |              |               |              |            |           |                  |             |      | 5.9            |
| 36 | 06.08        | 10 10 00.9                  |              | 13.1                      |              |               |              |            |           |                  |             |      |                |
| 37 | 13.08        | 07 30 00.2                  |              | 13.3                      |              |               |              |            |           |                  |             |      |                |
| 38 | 14.08        | 03 53 26.6                  |              | 13.0                      |              |               |              |            |           |                  |             |      |                |
| 39 | 16.08        | 07 13 51.3                  |              | 12.8                      |              |               |              |            |           |                  |             |      |                |
| 40 | 18.08        | 21 00 50.6                  |              | 13.2                      |              |               |              |            |           |                  |             |      |                |

| <i>Таблица 4</i> . Параметры | афтершоков землетрясения | 12 июля в 07"16" | c Mw = 5.2 |
|------------------------------|--------------------------|------------------|------------|
|------------------------------|--------------------------|------------------|------------|

Как следует из табл. 4, энергетические классы наиболее сильных афтершоков, определенные только по станции «Маканчи», составили всего лишь 7.7; 7.8. Как правило, максимальные афтершоки реализуются в течение первых двух-трех суток после главного толчка, и, следовательно, с большой долей вероятности можно предположить, что такой максимальный афтершок реализовался 12 июля в  $12^{h}49^{m}$ , имея  $K_{P}=7.8$ . При таком предположении величина энергетической ступени между главным толчком и максимальным афтершоком, равная  $\Delta K_{a}=6.8$ , уникальна, т. к. она очень большая.

В табл. 5 приведены параметры механизма этого очага, определенные по данным Национального ядерного центра [11, 12] и Гарвардского университета [10]. Решения в [12], полученные Н.Н. Полешко ( $\mathbb{N}$  1) по знакам первых вступлений Р-волн, и решения, полученные в HRV по методу тензора момента центроида ( $\mathbb{N}$  2), близки. В обоих случаях движение происходит под действием превалирующих растягивающих напряжений близширотного простирания; одна из нодальных плоскостей имеет северо-западное – юго-восточное простирание, другая плоскость в случае ( $\mathbb{N}$  1) имеет близмеридиональное направление, в случае ( $\mathbb{N}$  2) – северо-восточное – юго-западное. Однако в  $\mathbb{N}$  1 обе плоскости имеют более пологое залегание, чем в  $\mathbb{N}$  2. В решении  $\mathbb{N}$  1 по обеим плоскостям движение в очаге представлено сбросом, в решении  $\mathbb{N}$  2 – комбинацией сброса и сдвига (по плоскости *STK*=139° – это правосторонний сдвиг, по плоскости *STK*=46° – левосторонний (рис. 6).

*Таблица 5.* Параметры механизма очага землетрясения 12 июля в 07<sup>h</sup>16<sup>m</sup> с *Mw*=5.2

| № | Дата, | $t_0$ ,    | $K_{\rm P}$ | Mw  | C  | Оси гла | авных | напря | іжени | й   | Нодальные плоскости |    |      |     |    |      |
|---|-------|------------|-------------|-----|----|---------|-------|-------|-------|-----|---------------------|----|------|-----|----|------|
|   | д м   | ч мин с    |             |     | ,  | Т       |       | N P   |       | Р   | NP1                 |    |      | NP2 |    |      |
|   |       |            |             |     | PL | AZM     | PL    | AZM   | PL    | AZM | STK                 | DP | SLIP | STK | DP | SLIP |
| 1 | 12.07 | 07 16 15.7 | 13.6        |     | 5  | 251     | 22    | 338   | 68    | 142 | 140                 | 43 | -122 | 1   | 55 | -64  |
| 2 |       |            |             | 5.2 | 10 | 94      | 66    | 209   | 21    | 0   | 139                 | 67 | -172 | 46  | 83 | -23  |



*Рис. 6.* Механизм очага землетрясения 12 июля в 07<sup>h</sup>16<sup>m</sup> с *Мw*=5.2 (решения №1 и №2 из табл. 5)

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернены области сжатия.

## Литература

- 1. Бейсенбаев Р.Т., Калмыкова Н.А., Неверова Н.П. Северный Тянь-Шань (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Михайлова Н.Н., Соколова И.Н. Центральный и Восточный Казахстан // Землетрясения Северной Евразии в 1997 году. Обнинск: ФОП, 2003. С. 89–90.
- 3. Беляшова Н.Н., Михайлова Н.Н., Соколова И.Н. Центральный и Восточный Казахстан // Землетрясения Северной Евразии в 1996 году. – М.: ОИФЗ РАН, 2002. – С. 71–75.
- 4. Михайлова Н.Н., Неверова Н.П. Калибровочная функция для определения магнитуды землетрясений Северного Тянь-Шаня // Комплексные исследования на Алма-Атинском прогностическом полигоне. – Алма-Ата: Наука, 1986. – С. 41–47.
- 5. Михайлова Р.С. (сост.). Северный, Восточный и Центральный Казахстан (См. раздел IV (Каталоги землетрясений) в наст. сб. на CD).
- 6. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 7. Capon J. High-resolution frequency-wavenumber spectrum analysis // Proceedings of the Institute of Electrical and Electronic Engineers. 1969. V. 57. P. 1408–1418.

- 8. Нурмагамбетов А., Садыков А., Тимуш А.В., Хайдаров М.С., Власова А.А., Михайлова Н.Н., Сабитов М.М., Умирзакова А., Гапич В.А. Зайсанское землетрясение 14 июня 1990 г. // Землетрясения в СССР в 1990 году. – М.: ГС РАН, 1996. – С. 54–60.
- 9. Сейсмологический бюллетень (ежедекадный) за 1998 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1998–1999.
- 10. Bulletin of the International Seismological Centre (for 1998). Berkshire: ISC, 2000.
- Бейсенбаев Р.Т., Ли А.Н., Полешко Н.Н., Михайлова Н.Н. Характеристика сейсмотектонической деформации в районах Центрального и Восточного Казахстана // Тезисы докладов V Казахстанско-Китайского международного симпозиума 24–27 сентября 2003 г. – Алматы: ИС МОН РК, 2003. – С. 135–136.
- 12. Полешко Н.Н. (отв. сост.). Северный, Восточный и Центральный Казахстан (См. раздел V (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).