СЕВЕРО-ВОСТОК РОССИИ

Л.В. Гунбина, Н.М. Лещук, Б.М. Седов

В 1997 г. в регионе стабилизировалась работа сети наблюдений и укрепилась ее материально-техническая база. На станциях "Омсукчан" и "Нелькоба" построены новые павильоны для сейсмических приборов, что позволило улучшить регистрационные возможности аппаратуры. Произведен текущий ремонт помещений на станциях "Сеймчан", "Талая", "Омсукчан". Сейсмическая станция "Анадырь" включена в оперативную и срочную службу в системе ГС РАН. Параметры сети сейсмических станций, как аналоговых, так и цифровых, приведены в табл. 1,2.

Таблица 1. Сейсмические станции ОМСП СВКНИИ, работавшие в 1997 г., и их параметры

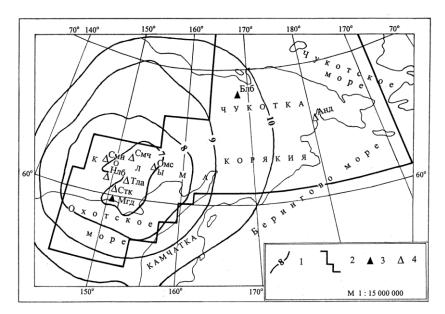

No	Сто	кишн		Пото	V	NON THURST		Аннородуро						
110		,		Дата		ординаты		Аппаратура						
	Название	Код		открытия	φ°, N	λ°, E	h _y ,	Тип	Компо-	V_{max}	ΔT_{max} ,			
		Межд. Рег.					M	прибора	нента		С			
1	2	3 4		5	6	6 7		9	10	11	12			
1	Магадан	MA2 MA2		22.10.93	59.575	150.768	339	IRIS						
2	Билибино	BILL	БЛБ	01.08.95	68.039	166.271	299	IRIS						
3	Сеймчан	SEY CM4		03.04.69	62.933	152.382	218	CKM-3 N,E,Z		33000	0.20-1.10			
								СКД	N,E,Z	1000	0.30-19.0			
								СКД-КПЧ	N,E,Z	50	0.30-18.0			
4	Анадырь	ANDR	АНД	10.11.81	64.734	177.496	55	CKM-3	N,E,Z	20000	0.20-1.00			
								СКД	N,E,Z	800	0.20-17.0			
5	Стекольный	MA1	MA1	26.03.71	60.046	150.730	221	CM-3	N,E,Z	17700	0.30-1.20			
6	Талая	TLAR	ТЛА	20.01.89	61.129	152.392	730	CM-3	N,E,Z	18000	0.10-1.40			
7	Омсукчан	OMS	OMC	01.12.67	62.515	155.774	527	CM-3	N,E,Z	54000	0.70-0.90			
8	Сусуман	SUUS	CMH	01.08.69	62.781	148.149	640	CKM-3	N,E,Z	16000	0.20-1.20			
9	Нелькоба		НЛБ	01.09.83	61.336	148.808	531	CM-3	N,E,Z	12000	0.20-1.20			

Таблица 2. Параметры цифровых станций IRIS

Название станции	Тип	Перечень каналов	ΔT_{max} ,	Частота опросов, (за 1 с)	Разрядность АЦП	Чувствительность, велосиграф – отсчет/(м/с), акселерограф – отсчет/(м/с²)
Магадан	IRIS	BH(NZE)-v	0.33-360	20	24	$9.89*10^{10}$
	STS-1	LH(NZE)-v	4-360	1	24	$2.47*10^{10}$
		VH(NZE)-v	50-360	0.1	24	$6.18*10^{11}$
		VM(NZE)-a	360-∞	0.01	24	$8.14*10^{11}$
	GS-13	EH(NZE)-v	20-0.05	80	24	$7.76*10^{12}$
		SH(NZE)v	20-0.5	40	24	$7.76*10^{12}$
Билибино	IRIS	BH(NZE)-v	0.33-360	20	24	9.72*10 ¹⁰
	STS-1	LH(NZE)-v	4-360	1	24	$2.43*10^{10}$
		VH(NZE)-v	50-360	0.1	24	$6.08*10^{11}$
		VM(NZE)-a	360-∞	0.01	24	$8.00*10^{11}$
	GS-13	EH(NZE)-v	20-0.5	80	24	$7.81*10^{12}$
-		SH(NZE)-v	20-0.5	40	24	$7.81*10^{12}$

Примечание. Символами у/а обозначены велосиграф и акселерограф, соответственно.

Энергетическая представительность землетрясений, обеспечиваемая данной сетью, изображена на рис. 1. Как видим, в пределах центральных районах Колымы регистрируются события с K_{min} =7, на Чукотке уровень K_{min} =10~11. Методика определения основных параметров землетрясений не изменилась [1,2]. Расчеты на ЭВМ проводились по программе "ОЧАГ" [3].

Рис. 1. Карта энергетической представительности землетрясений Северо-Востока России по данным наблюдений за 1997 г.

1 – изолиния K_{min} ; 2 – граница региона; 3,4 – сейсмическая станция, опорная и региональная, соответственно.

В 1997 г. в регионе зарегистрировано 63 местных землетрясений с $K_P \ge 6.8$ [4], карта их эпицентров дана на рис. 2. Очаги всех землетрясений расположены в пределах земной коры на глубинах 5-33 км. Распределение землетрясений по энергетическим классам и суммарная сейсмическая энергия по районам даны в табл. 3. Выделенная суммарная сейсмическая энергия уменьшилась на порядок по сравнению с таковой в 1996 г. [1] и составила $1.02*10^{13}$ Дж.

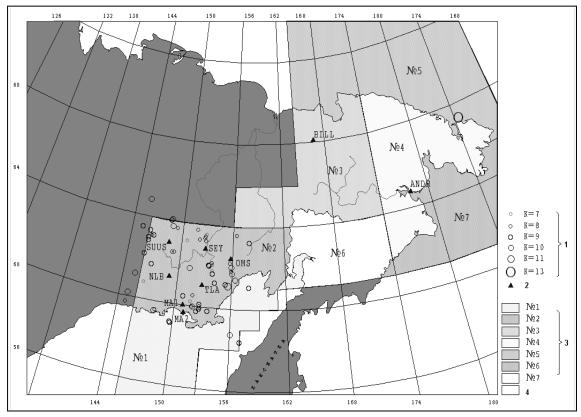


Рис. 2. Карта эпицентров землетрясений Северо-Востока России за 1997 г.

1 – энергетический класс K_P ; 2 – сейсмическая станция; 3 – районы; 4 – внешняя территория.

Таблица 3. Распределение числа землетрясений по энергетическим классам K_P и суммарная сейсмическая энергия ΣE по районам

No	Район	7	8	k	N_{Σ}	ΣE*10 ¹¹ , Дж			
1 2 3 4 5 6	Охотское море Колыма Западная Чукотка Восточная Чукотка Чукотское море Берингово море Корякия	6	20	4 19 - - -	10 1 11 - - -	11 1 - - - -	13 - - - 1	5 57 - - 1 -	0.14 2.31 - 100
	Всего	6	20	23	12	1	1	63	102.45

Эпицентры землетрясений в 1997 г. приурочены в основном к району Колымы, восточной части Балыгычанского массива и северо-западной части Верхне-Колымского нагорья [5]. Следует учитывать, что на Чукотке действуют только две станции ("Анадырь" и "Билибино"), районы N N N = 3,4,6,7 остались практически без наблюдений.

Наиболее сильным событием в 1997 г. является землетрясение в Чукотском море, происшедшее 24 марта в 06^h56^m с $K_p=12.7$, MLH=5.1 [4]. Оно записано всеми станциями региона и ощущалось жителями поселков побережья. Его эпицентр располагается вблизи очага землетрясения, происшедшего 24.10.1996 г. ($t_0=19^h31^m$, $K_p=15.1$, MS=6.2 [2]). Согласно рис. 3 оба события располагаются в Транс-Берингийском сейсмическом поясе (ТБСП) [10], на границе зон Колючинская губа — Восточная Чукотка (зона A) и Анадырь-Амгуэма-Чукотское море (зона C). Место контакта зон A и C является наиболее сейсмически активной частью Чукотки. Здесь, помимо рассматриваемых землетрясений, еще ранее произошло даже более сильное землетрясение ($M=6.2\sim6.9$ в 1928 г.). Зона A (Колючинская губа — Восточная Чукотка) протягивается с северо-запада на юго-восток, а зона C (Анадырь-Амгуэма-Чукотское море) имеет субширотное простирание (рис. 3). Характер сейсмичности, геофизические и геологические данные позволяют предполагать, что зона A является системой рифтов, смещаемых трансформными разломами, а зона C представляет северную границу между ТБСП и Северо-Американской плитой (САП). Сам пояс является пограничной структурой между САП и Беринговоморским блоком, вращающимся в направлении часовой стрелки (рис. 4). Полюс вращения располагается в точке, находящейся юго-восточней Чаунской губы.

Рис. 3. Карта распределения сейсмичности Чукотки

Зоны сейсмичности: A — Колючинская губа — Восточная Чукотка; B — Корякско-Провиденская-Сьюардская зона; C — Анадырь-Амгуэмская-Чукотское море; D — полуостров Сьюарда.

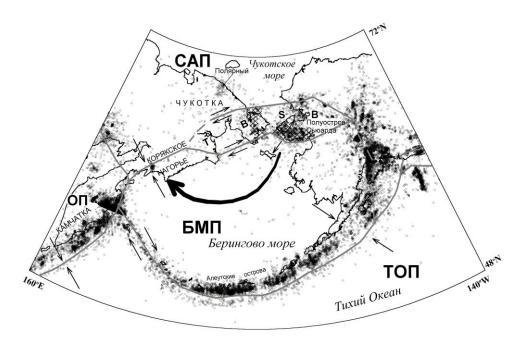


Рис. 4. Карта сейсмичности Транс-Берингийского сейсмического пояса

Звездочкой обозначен полюс вращения Беринговоморской микроплиты, относительно Северо-Американской. Большая стрелка показывает направление вращения Беринговоморского блока относительно Северо-Американской плиты. Плиты: САП – Северо-Американская, БМП – Беринговоморская, ТОП – Тихоокенанская, ОП – Охотоморская.

На рис. 5 дана также сейсмотектоническая карта Чукотки и западной Аляски [10], показывающая положение эпицентров землетрясений, фокальных механизмов (зачернены области сжатия), а также предполагаемых тектонических границ. Черными линиями показаны тектонические нарушения, выявленные по топографическим картам и космическим снимкам. Предполагаемые в [10] рифты закрашены серым цветом.

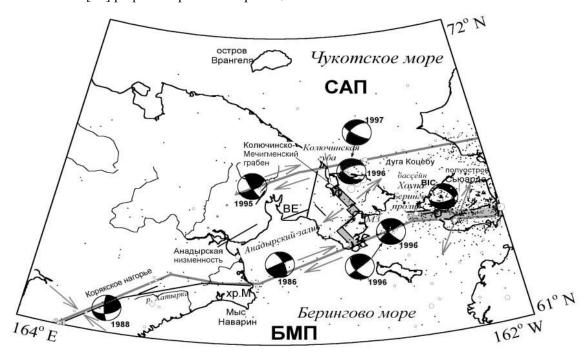


Рис. 5. Сейсмотектоническая карта Чукотки и западной Аляски

МЗ – Мечигменский залив, BE – Энмеленский вулкан, xp. М – xp. Майнопыльгин , САП – Северо-Американская плита, ВМП – Беринговоморская плита; большими стрелками показано направление относительных перемещений.

Значительные магнитуды землетрясений 1996 г. и 1997 г. позволили совместно с данными сети станций Аляски определить механизм этих землетрясений (табл. 4), свидетельствующий о

правостороннем сдвиге и близких значениях характеристик нодальных плоскостей.

Таблица 4. Параметры механизмов очагов землетрясений с K_P =15.1 и 12.7, происшедших 24.10.1996 г. в 19^h31^m и 24.03.1997 г. в 06^h56^m, соответственно

No	Дата,	t ₀ ,	h,	Магн	итуды	Оси главных напряжений						Нодальные плоскости					Ист.	
	д м	ч мин с	КМ	^MS	^MPSP	T		N		P		NP1			NP2			
				#Ms	#m _b	PL AZM		PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
Землетрясение 24.10.1996 г., 67.13 N, -172.84 W																		
-	24.10	19 31 56.0	19*	^6.2/58	^6.5/28	7	9	38	273	51	108	134	50	-36	249	63	-134	[6]
				#6.1/79	#5.8/182													
Землетрясение 24.03.1997 г., 67.07 N, – 173.31 W																		
-	24.03	06 56 14.0	16*	^4.8/9	^4.6/23	13	183	49	288	38	82	230	53	-160	127	74	-39	[7]
				#5.0/24	#5.1/84													

Примечание. В графе 4 знаком * помечены определения глубины очага и ее погрешности из [6,7] по волнам типа pP-P, отраженным от дневной поверхности вблизи эпицентра; в графе 5 знаками $^{^{^{^{\prime}}}}$ и # помечены магнитуды MS и Ms по поверхностным волнам из [8,9] и [6,7], соответственно; такие же обозначения в графе 11 для магнитуд MPSP и m_b по объемным волнам в дальней (Δ >2000 км) зоне.

Литература

- 1. **Гунбина Л.В., Ефремова Л.В. 1999.** Землетрясения Северо-Востока // Землетрясения Северной Евразии в 1993 году. М.: Изд-во НИА-Природа. С. 118-120.
- 2. **Гунбина Л.В., Лещук Н.М. 2002.** Северо-Восток России // Землетрясения Северной Евразии в 1996 году. М.: Изд-во ОИФЗ РАН. С. 144-147.
- 3. **Андреев Т.А. 1984.** Расчет на ЭВМ параметров слабых землетрясений // Сейсмические процессы на Северо-Востоке СССР. Магадан: Изд-во СВКНИИ. С. 116-127.
- 4. Гунбина Л.В., Лешук Н.М. Северо-Восток России. См. раздел III в наст. сб. (на CD).
- 5. **Геология Северо-Востока СССР**. Т. XXX. М.: Изд-во "Недра". С. 19.
- 6. Bulletin of the International Seismological Centre (for 1996). 1998-1999. Ньюбери, ISC.
- 7. Bulletin of the International Seismological Centre (for 1997). 1999-2000. Berkshire, ISC.
- 8. **Сейсмологический бюллетень (ежедекадный) за 1996 год. 1996-1997.** / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ОМЭ ИФЗ РАН.
- 9. **Сейсмологический бюллетень (ежедекадный) за 1997 год. 1997-1998.** / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ОМЭ ИФЗ РАН.
- Fujita K., Mackey K., Mc.Caleb R. C., Gunbina L.M. 2002. Seismicity of Chukotka, northeastern Russia //
 Geological Society of America. Special Paper 360. (Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic
 Margin and Adjacent Landmasses.) P. 259-272.