КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Н.А. Давыдова, М.И. Рудик, А.О. Бобков

В 1997 г. на территории Курильских островов работали три сейсмические станции Сахалинской опытно-методической сейсмологической партии (СОМСП): "Курильск", "Северо-Курильск" и "Южно-Курильск" (рис. 1, табл. 1). Сейсмическая станция "Шикотан" была закрыта в ноябре 1996 г. Для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Сахалина и Приамурья, а также бюллетени ОМЭ ОИФЗ РАН [1], ЈМА, Национального информационного центра по изучению землетрясений (NEIC, США), ISC [2]. Методика обработки данных и схема деления региона на отдельные сейсмоактивные районы остались без изменений [3-13].

No	Стании	я		Лата	Кo	орлинат	ы		Апг	ianatyna	
51-	Название	К	ол	открытия	$0^{\circ} N$	$\lambda^{\circ} E$	h	Тип	Компо-	V/	ΔΤ
	11002001110	межл	рег	omparia	Ψ,	, _	м	прибора	нента	чувствит-сть	C
1	2	3	4	5	6	7	8	9	10	11	12
1	Северо-Курильск	SKR	СВК	март 1958	50.67	156.11	22	СКМ-3	N.E.Z	20000	0.36-0.65
	JI JI JI			· F					N,E,Z	10000	0.36-0.65
									N,E,Z	5000	0.36-0.65
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-18.0
									N,E,Z	200	0.20-16.0
								СКД-КПЧ	N,E,Z	50	0.20-19.0
								C-5-C	N,E,Z	10.0	0.045-4.6
									N,E,Z	1.0	0.085-4.6
								ОСП	N,E,Z	$0.04 c^2$	0.020-2.0
								ССРЗ	N	$0.0019 c^2$	0.5-18.0
									E	$0.0022 c^2$	3.0-20.0
								CM 2	Z	0.0024 c^2	0.5-20.0
								CM-3	N,E,Z	25.0	0.011-0.11
								VEH	N,E,Z	1.0	0.011-0.11
								CMP 2	NE	55.0 7.0	2050
								CMP-0	N	1.0	2.0-3.0
								СБМ	1	1.0	0.23-0.27
2	Курильск	KUR	КУР	январь 1965	45.23	147.87	40	CKM-3	N.E.Z	20000	0.37-0.68
	JF		-	·r					N,E,Z	10000	0.37-0.68
									N,E,Z	5000	0.37-0.68
								СКД	N,E,Z	1000	0.20-20.0
									N,E,Z	500	0.20-17.0
									N,E,Z	200	0.20-15.0
								СКД-КПЧ	N,E,Z	20	0.20-15.0
								C-5-C	Ν	1.0	0.045-4.6
									N	10.0	0.053-4.6
									Z	1.0	0.044-4.6
									Z	10.0	0.053-4.6
									E	1.0	0.047-4.6
								OCT	E N	10.0	0.053-4.6
								UCII	IN E	$0.045 c^{-1}$	0.013-1.1
										0.045 c	0.014-1.1
2	HOWHO-KUMUTI OF	VIIV	ЮКЪ	0KT96pt 1060	11 02	1/15 86	28	CKM 3		10000	0.013-2.2
5	тожно-курильск	TUK	IUI	октябрь 1900	++.03	140.00	20	CIVIT-J	$N \in Z$	5000	0.22-0.5 0.22-0.5
									NEZ	2500	0.22-0.5
								СКД	N,E.Z	1000	0.20-20.0

№	Станция			Дата	Дата Координаты			Аппаратура			
	Название	Код		открытия	φ°, Ν	λ°, Ε	h,	Тип	Компо-	V _{max} /	ΔT_{max} ,
		межд.	рег.				М	прибора	нента	чувствит-сть	с
1	2	3	4	5	6	7	8	9	10	11	12
									N,E,Z	500	0.15-17.0
									N,E,Z	200	0.15-17.0
								CCP3	Ν	$0.0018 c^2$	0.5-18.0
									E	$0.0019 c^2$	3.0-20.0
									Ζ	$0.0021 c^2$	0.5-20.0
								ACT	Ν	$0.0541 c^2$	
									E	$0.0590 c^2$	
									Ζ	$0.0574 c^2$	

Примечание. Сейсмографы С-5-С, акселерографы ОСП и ССРЗ работали в ждущем режиме регистрации.

В 1997 г. на территории региона определены параметры 653 землетрясений с MLH≥4.0 (K_C≥9), глубину гипоцентра удалось оценить для 454 землетрясений [14]. Карта эпицентров представлена на рис. 1.

В качестве общей характеристики региона рассмотрим распределение землетрясений по глубине гипоцентров, представленное в табл. 2. Из нее следует, что свыше 62% землетрясений отмечено на глубине h≤80 км, при этом максимум их числа (N=130) зарегистрирован в слое h=31-50 км.

h, км	N_{Σ}	h, км	N_{Σ}	h, км	N_{Σ}
1 - 10	_	201 - 210	3	401 - 410	1
11 - 20	2	211 - 220	4	411 - 420	-
21 - 30	32	221 - 230	6	421 - 430	2
31 - 40	65	231 - 240	-	431 - 440	1
41 - 50	65	241 - 250	2	441 - 450	-
51 - 60	52	251 - 260	2	451 - 460	1
61 - 70	43	261 - 270	2	461 - 470	-
71 - 80	26	271 - 280	1	471 - 480	-
81 - 90	12	281 - 290	-	481 - 490	1
91 - 100	13	291 - 300	-	491 - 500	3
101 - 110	21	301 - 310	-	501 - 510	-
111 - 120	12	311 - 320	-	511 - 520	1
121 - 130	7	321 - 330	1	521 - 530	-
131 - 140	13	331 - 340	3	531 - 540	-
141 - 150	13	341 - 350	1	541 - 550	-
151 - 160	13	351 - 360	2	551 - 560	-
161 - 170	2	361 - 370	3	561 - 570	-
171 - 180	1	371 - 380	3	571 - 580	1
181 - 190	4	381 - 390	3	581 - 590	-
191 - 200	3	391 - 400	7	591 - 608	1

Таблица 2. Распределение землетрясений Курило-Охотского региона по интервалам глубины гипоцентра

Суммарная сейсмическая энергия (табл. 3), выделившаяся в очагах землетрясений в 1997 г., в 9 раз меньше таковой в 1996 г. [13], причем для землетрясений с глубиной гипоцентра h≤80 км она уменьшилась почти в 36 раз, для глубокофокусных (h>80 км) – в 5 раз. Наибольшее ее количество высвободилось в очагах глубоких землетрясений в районе о. Хоккайдо. Самое сильное (MLH=6.5, MSH=6.5) землетрясение зарегистрировано в Кунашир-Шикотанском районе 15 ноября в 07^h05^m на глубине h=158±6 км (42 на рис. 1, 2). Оно ощущалось в Японии с интенсивностью сотрясений до 6-7 баллов, на Южных Курилах – до 4 баллов [14]. Всего же было 76 ощутимых землетрясений. Распределение их по районам и интервалам глубин гипоцентров приведено в табл. 4, куда не вошли 5 землетрясений с неопределенной глубиной очага, происшедшие в районе о. Хоккайдо и ощущавшиеся в Японии с интенсивностью 1-2 балла.

Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона за 1997 г.

1 – магнитуда MLH (h≤80 км), MSH (h>80 км); 2 – глубина h гипоцентра, км; 3 – сейсмическая станция; 4 – граница и номер района; 5 – ось глубоководного Курило-Камчатского желоба; 6 – изолиния на уровне h=–3000 м оконтуривает глубоководную Курильскую котловину. Числа – номера землетрясений в соответствии с графой 1 регионального каталога [14].

Таблица 3. Распределение числа землетрясений по магнитудам MLH и MSH и суммарная сейсмическая энергия ΣЕ по районам

			h≤80 кı	М								
N⁰	Район		MLH ΣE*10									
		4.0	4.5	5.0	5.5	6.0	6.5	7.0	Дж			
1	Парамуширский	22	10	-	-	-	-	-	0.02			
2	Онекотан-Матуанский	36	8	-	2	-	-	-	0.48			
3	Симушир-Урупский	56	27	5	2	1	-	-	1.3			
4	Северо-Итурупский	67	27	-	1	1	-	-	4.1			
5	Кунашир-Шикотанский	122	43	2	1	1	-	-	3.0			
6	Остров Хоккайдо	26	15	4	2	1	-	-	2.8			
7	Японское море	2	-	-	-	-	-	-				
8	Охотское море	-										
	Всего:	330	130	11	8	4	-	-	11.67			

	h>80 км										
N₂	Район	MSH $\Sigma E * 10^{13}$,									
		4.0	4.5	5.0	5.5	6.0	6.5	7.0	Дж		
1	Парамуширский	2	4	-	-	-	-	-	0.01		
2	Онекотан-Матуанский	12	4	-	1	-	-	-	0.18		
3	Симушир-Урупский	8	4	2	-	-	-	-	0.05		
4	Северо-Итурупский	5	3	-	-	-	-	-	0.004		
5	Кунашир-Шикотанский	16	9	1	-	-	1	-	16		
6	Остров Хоккайдо	17	16	3	3	1	1	-	48		
7	Японское море	3	3	3	1	-	-	-	0.34		
8	Охотское море	14	5	7	12	7	1	-	17		
	Всего:	79	46	16	17	9	3	-	82.58		

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов К_С для землетрясений с глубиной h<80 км и из магнитуд MSH с h≥80 км по следующим соотношениям: MLH=(K_C-1.2)/2 и MLH=(MSH-1.71)/0.75. Для второго соотношения вводилась поправка за глубину очага.

Рис. 2. Карта механизмов очагов землетрясений Курило-Охотского региона за 1997 г.

1-6 - соответствуют рис. 1; 7 - диаграмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия.

Таблица 4. Распределение числа землетрясений в районах Курило-Охотского региона по интервалам глубины h гипоцентра, максимальные значения интенсивности сотрясений I_{max} и магнитуды M_{max}

N⁰	Район	h	N_{Σ}	N _{omvt} .	I _{max}	M _{max}	
		КМ		Ť		MLH	MSH
1	Парамуширский	0-30	5	-	-	4.6	5.2
		31-80	15	3	1-2	4.3	5.9
		81-160	6	1	1-2	4.6	(6.0)
2	Онекотан-Матуанский	0-30	2	-	-	4.4	5.4
		31-80	32	1	1-2	5.7	6.4
		81-230	17	-	-	-	5.7
3	Симушир-Урупский	0-30	15	-	-	5.9	6.3
		31-80	57	1	1-2	5.4	6.0
		81-184	14	-	-	4.3	6.4
4	Северо-Итурупский	0-30	4	-	-	4.3	5.5
		31-80	45	1	3-4	6.3	6.4
		81-152	8	-	-	3.7	5.5
5	Кунашир-Шикотанский	0-30	4	-	-	4.5	-
		31-80	71	18	5	6.1	6.4
		81-161	28	8	6-7	6.5	6.8
6	Остров Хоккайдо	0-30	3	2	1-2	5.4	5.8
		31-80	31	18	5	6.1	6.5
		81-280	40	15	5	5.4	6.4
7	Японское море	0-30	1	1	1-2	-	-
		31-80	1	1	3-4	4.2	-
		81-330	10	-	-	-	(5.4)
8	Охотское море	0-30	-	-	-	-	-
		31-80	-	-	-	-	-
		81-608	46	1	3-4	5.7	6.0

Определены механизмы очагов 48 землетрясений с MLH≥4.2 (табл. 5, рис. 2): 25 из них относятся к мелкофокусным (h≤80 км), 17 – к промежуточным (h=81-300 км), 6 – к глубокофокусным (h>300 км). Анализ каталога механизмов очагов землетрясений [15] позволяет установить характер напряженного состояния среды и типичные сейсмодислокации по каждому из районов в трех интервалах глубины (табл. 6,7).

Таблица 5. Номера землетрясений с известным механизмом очага в разных районах и на разных глубинах

Nº	Номер эпицентра на рис. 1										
р-на		Интерв	ал глубин, км		N						
P	0-30	31-80	81-300	>300	IN_Σ						
1			3		3						
2	24	2, 16, 37	5		5						
3	13, 14, 15, 43	11, 28	23, 36, 41		9						
4		6, 26			2						
5		7, 8, 10, 22, 40, 47	1, 21, 25, 34, 38, 42		12						
6	32	4, 20, 27, 29, 30, 31	9, 18, 19, 35, 48		12						
7			39		1						
8				12, 17, 33, 44, 45, 46	6						
Всего	6	19	17	6	48						

Таблица 6. Пространственно-энергетическое распределение сейсмодислокаций*

N⁰	h,		Магнитуда: MLH(h≤80км), MSH(h≥81км)									
р-на	КМ	7.0	6.5	6.0	5.5	5.0	4.5					
1	81-300				сброс							
2	0-30					взброс	взброс					
	31-80				взрез, взброс		взброс					
	81-300				взрез							

№	h,			Магнитуда: ML	.H(h≤80км), MSH(h≥81км)	
р-на	КМ	7.0	6.5	6.0	5.5	5.0	4.5
3	0-30			взброс	взрез	пологий надвиг,	
						сдвиг	
	31-80				взрез	сброс	
	81-300			взброс	сброс		взрез
4	31-80		взрез		взрез		
5	31-80			пологий надвиг,		сброс	взброс, сдвиг,
				взброс			пологий надвиг
	81-300	взрез	пологий надвиг,		взброс, сброс		
			сдвиг				
6	0-30				взрез		
	31-80			взброс	взрез	сдвиг	сдвиг
	81-300		взрез	сдвиг	пологий надвиг,		
					сдвиг, взрез		
7	81-300			сброс			
8	h>300			пологий надвиг,	взброс, пологий	сброс, взброс	
				сдвиг	надвиг		

* Классификция по типу механизма (сейсмодислокации) осуществлена по величине углов наклона к горизонту оси промежуточного напряжения (PLN) и нодальных плоскостей (DP1, DP2): сдвиги – PLN≥45°; сбросы и взбросы – PLN<45°, 20°<DP1, DP2<70°; взрезы (или пологие сбросы) – PLN<45°, DP1≥70°, DP2≤20°.</p>

N⁰	Район	h,	Напряжения						Тип
		КМ		Г	1	Ν		Р	подвижки
			PL	AZM	PL	AZM	PL	AZM	
1	Парамуширский	81-300	13	15	03	284	77	183*	сброс*
2	Онекотан-Матуанский	0-30	51	116	36	271	13	10*	сдвигонадвиг
		31-80	82	34	05	248	06	156	надвиг
		81-300	60	19	17	257	24	159*	взброс
3	Симушир-Урупский	0-30	70	267	11	32	16	124	надвиг
		31-80	12	309	24	217	62	70	сброс
		81-300	38	300	47	91	18	196	сдвигонадвиг
4	Северо-Итурупский	31-80	60	320	20	91	20	188	надвиг
5	Кунашир-Шикотанский	31-80	66	26	23	202	00	290	сдвигонадвиг
		81-300	58	02	21	229	20	139	надвиг
6	Остров Хоккайдо	0-30	32	266	18	08	52	123*	сброс
		31-80	65	284	06	24	24	116	взброс
		81-300	61	338	18	206	19	108	надвиг
7	Японское море	81-300	13	341	03	250	77	148*	сброс
8	Охотское море	300-400	44	57	43	214	12	313	сдвигонадвиг
	_	401-600	65	240	23	83	09	349*	сдвигонадвиг
		h>600	29	52	45	175	31	302	сдвиг

Таблица 7. Осредненная ориентация тектонических напряжений и тип подвижки в трех интервалах глубины h в каждом районе

* Ориентация тектонических напряжений по единственному решению.

График развития сейсмического процесса по районам в течение 1997 г. представлен на рис. 3.

В Парамуширском районе (№ 1) наблюдалась слабая сейсмическая активность. На его территории зарегистрировано 38 землетрясений с $K_C \ge 9$, что составляет по числу землетрясений – 61% от такового в 1996 г., по энергии – в 4.5 раза меньше в очагах мелкофокусных (h≤80 км) и в 28 раз – глубокофокусных землетрясений [13]. Почти половина (47%) всех землетрясений зарегистрирована на глубине h=30-80 км (табл. 4). Самые сильные землетрясения района произошли в западной части шельфа о. Парамушир (3 февраля в 07^h53^m с MSH=5.6, h=160±8 км) и с восточной стороны Курило-Камчатской глубоководной впадины (25 марта в 14^h31^m с MSH=4.6, h=23±2 км) [14]. Для первого землетрясения определен механизм очага [15], который реализовался под воздействием преобладающего напряжения растяжения и близвертикального напряжения сжатия. По обеим возможным плоскостям разрыва наблюдалась подвижка типа сброс (табл. 6). Сейсмический процесс в Парамуширском районе в течение 1997 г. протекал равномерно (рис. 3).

В Онекотан-Матуанском районе (№ 2) произошло 63 землетрясения с $K_C \ge 9$, что соответствует их числу в 1996 г., но суммарная сейсмическая энергия мелкофокусных толчков в 2.5 раза меньше таковой в 1996 г., глубоких – в 4.3 раза [13]. Не менее 52% из них имеют глубины h=30-80 км (табл. 4). Самое сильное (MLH=5.7, MSH=6.0) землетрясение района (37 на рис. 1, 2) зарегистрировано 8 ноября в $12^{h}14^{m}$ с h=68±28 км. В группе эпицентров вблизи Курило-Камчатского желоба (рис. 1,2) выделяется землетрясение (16), происшедшее 22 мая в $14^{h}41^{m}$ с MLH=5.3, h=50±4 км. В шельфовой зоне островов зарегистрировано 17 толчков на глубине 105-230 км с MSH=4.8-5.6 [14]. Определены механизмы очагов 5 землетрясений (табл. 5), из которых четыре (2,16,24,37) относятся к верхнему интервалу глубин (h≤80 км), а одно (5) – к промежуточному (h=181 км) [15]. Для очагов землетрясений (2,24,37) преобладающими были сжимающие напряжения, которые обусловили подвижку типа взброс. В очагах землетрясений (5 и 16) напряжения сжатия и растяжения действовали в равных условиях и характер подвижки в обоих – взрез (табл. 6). Сейсмический процесс развивался равномерно на протяжении года, за исключением небольшого всплеска активности в мае и ноябре (рис. 3).

В Симушир-Урупском районе (№ 3) также наблюдался заметный спад как числа землетрясений (зарегистрировано 105 землетрясений с К_с≥9, что в 1.5 раза меньше, чем в 1996 г.), так и суммарной сейсмической энергии: для мелкофокусных она в 308 раз меньше таковой в 1996 г., для глубоких – в 211 раз [13]. Почти 60% всех землетрясений произошло на глубине h=30-80 км (табл. 4). В пространстве эпицентры мелкофокусных землетрясений расположились двумя группами: первая – юго-восточнее о. Симушир, вторая – юго-восточнее о. Уруп. Обе группы тяготеют к Курило-Камчатскому глубоководному желобу (рис. 1). В Симуширской группе можно выделить подгруппу землетрясений с К_с=9-11, происшедших в апреле, которые, возможно, являются форшоками и афтершоками землетрясения (14) с MLH=5.9, MSH=6.3, происшедшего 25 апреля в 05^h37^m, h=30±3 км. Самый сильный (MLH=5.3, MSH=5.7) форшок (13) зарегистрирован в тот же день в 02^h50^m с h=30±4 км [14]. Анализируя механизмы их очагов в [15] можно предположить, что система напряжений в них была неустойчивой: очаг землетрясения (13) характеризуется подвижкой типа взрез, в очагах (14,15,43) отмечены взброс и пологие надвиги (табл. 6). В Урупской группе наиболее сильным (MLH=5.4, MSH=5.6) был толчок (28), зарегистрированный 5 октября в 03^h29^m с h=71±5 км. В очагах землетрясений (23,28,41) установлено преобладание растягивающих напряжений, что, по-видимому, характерно и для мелкофокусного очага (11). Характерные дислокации – взрез и сброс (табл. 6). Среди несгруппированных землетрясений района с гипоцентрами на глубине h=106-185 км самый сильный (MSH=5.9) толчок (36) отмечен 6 ноября в 22^h46^m с h=114±9 км [14], который реализовался в условиях близгоризонтального напряжения сжатия и близвертикального напряжения растяжения. Характер подвижки – взброс (табл. 6). Сейсмический процесс развивался неравномерно, во второй половине года неглубокофокусная сейсмическая активность в районе значительно уменьшилась (рис. 3).

В Северо-Итурупском районе (№4) весьма заметно уменьшение числа глубоких очагов, а число мелких уменьшилось незначительно. Всего зарегистрировано 104 землетрясения с $K_C \ge 9$, что в 2 раза меньше, чем в 1996 г., при этом суммарная сейсмическая энергия мелкофокусных толчков уменьшилась на 1.5 порядка, глубоких – более чем на 5 порядков [13]. Почти половина (46%) землетрясений отмечена на глубине h=30-80 км. Во времени числа землетрясений распределены почти равномерно (рис. 3). Из наиболее сильных следует отметить землетрясение (6) 21 февраля в $23^{h}40^{m}$ вблизи Курило-Камчатской впадины с MLH=6.3, MSH=6.4, h=49±6 км. Оно ощущалось в г. Курильске с интенсивностью 2 балла. В 40 км севернее зарегистрировано землетрясение (26) с MLH=5.3, MSH=5.9, h=34±3 км, происшедшее 5 сентября в $10^{h}31^{m}$ [14]. Для этих двух землетрясений определены механизмы очагов [15]. Система напряжений в их очагах характеризуется одинаковым (в пределах точности определения) наклоном осей Р и Т относительно горизонта. Установленная дислокация в обоих очагах – взрез (табл. 6).

Кунашир-Шикотанский район (№5) оказался, как всегда, наиболее сейсмоактивным, хотя в нем также заметен спад числа мелких землетрясений при некотором увеличении глубоких. Зарегистрировано 196 землетрясений с $K_{C} \ge 9$, что почти соответствует числу землетрясений в 1996 г., но суммарная сейсмическая энергия мелкофокусных толчков уменьшилась в 4 раза, а глубокофокусных – наоборот, увеличилась в 1.3 раза [13]. На глубине h=30-80 км произошло около 37 % землетрясений и около 14% – на глубине h=81-161 км. Самое сильное (MLH=6.5, MSH=6.8) землетрясение (42) не только района, но и региона в целом, зарегистрированное 15

ноября на северо-востоке о. Хоккайдо, описано выше. Заметна значительная группа эпицентров восточнее о. Шикотан (рис. 1), где зафиксирован сильный (MLH=5.9, MSH=6.4) толчок (7) 28 февраля в 11^h32^m с макросейсмическим эффектом около 4 баллов в г. Южно-Курильске. В этом же городе и с такой же интенсивностью сотрясений ощущалось сильное (MLH=6.1, MSH=6) землетрясение (22), зарегистрированное 14 июля в 16^h09^m с h=55±7 км [14]. В Кунашир-Шикотанском районе определены механизмы очагов 12 землетрясений [15], шесть из них имеют глубины в диапазоне h=31-80 км, и еще шесть – h=81-300 км. Систему напряжений в верхнем слое характеризует преобладающее напряжение сжатия. В очагах четырех землетрясений (7,8,22,40) наблюдались взбросовые и надвиговые подвижки, а для землетрясений (10 и 47) подвижка носила характер сдвига и сброса, соответственно. Система напряжений в промежуточном интервале глубины была неустойчивой: в очагах землетрясений (1,21,38) преобладали близгоризонтальные напряжения сжатия и подвижки типа взброс и надвиг, в очагах других землетрясений (25,34,42) близгоризонтальные напряжения растяжения, которые обусловили подвижку типа сброс для землетрясения (25), сдвиг – для (34), взрез – для (42) (табл. 6). Анализ сейсмического процесса показывает, что высвобождение сейсмической энергии преимущественно происходило на глубинах h≥81 км на протяжении всего года (рис. 3).

Сейсмичность района о-ва Хоккайдо (№ 6) заметно усилилась: зарегистрировано 89 землетрясений с К_с≥9, что почти в 2 раза выше, чем в 1996 г., при этом суммарная сейсмическая энергия мелкофокусных толчков почти в 117 раз превысила таковую в 1996 г., глубокофокусных – почти в 130 раз [13]. Около 38% землетрясений произошло на глубине h≤80 км и около 45% – на глубине h=81-280 км [14]. Эпицентры мелкофокусных землетрясений распределились вдоль юговостока острова, образуя на значительном удалении от побережья немногочисленную группу на глубине h=30-80 км (рис. 1). Здесь 8 октября в 21^h20^m произошло сильное (MLH=6.1, MSH=6.2) землетрясение (29) с h=33±5 км с интенсивностью сотрясений II балла по шкале JMA (по оперативным данным Японии), что соответствует 3-4 баллам по шкале MSK-64. Его очаг характеризовался преобладанием сжимающего напряжения [15]. По обеим нодальным плоскостям наблюдалась взбросо-сдвиговая подвижка. Механизм очагов других, более слабых, землетрясений (27 и 31) был аналогичен землетрясению (29). Для двух других очагов этой группы (30,32) имела место другая подвижка – взрез (табл. 6). Всего в районе о. Хоккайдо определены механизмы очагов 12 землетрясений (табл. 5). Гипоцентры 7 из них расположены в верхнем интервале глубин, 5 – в промежуточном [15]. По данным о механизмах очагов система напряжений в верхнем интервале глубины была разной. Высокой сейсмической активностью отличались промежуточные слои фокальной зоны. Землетрясения с гипоцентрами на глубине h=81-280 км возникали преимущественно под материковой частью о. Хоккайдо. Их суммарная сейсмическая энергия была большей среди всех районов Курило-Охотского региона. По данным о механизмах очагов (9,18,19,35,48) в этом глубинном слое оси напряжений Р и Т наклонены к горизонту под одинаковыми углами (в пределах точности полученных решений), что обусловило характер дислокаций типа пологого надвига (9), взреза (35,48) и сдвига (18,19) (табл. 6). Ход сейсмического процесса был неравномерным, высокий всплеск активности отмечался в октябре (рис. 3).

В Японском море (№7) зарегистрировано 12 землетрясений, из которых два имеют глубины h≤80км и суммарная их энергия примерно в 10 раз меньше таковой в 1996 г., а 10 землетрясений – в диапазоне глубины h=81-330 км с суммарной энергией в 597 раз ниже таковой в 1996 г. [13, 14]. Наиболее сильным (MPV=6.6, MSHA=6.0) был толчок (39), происшедший 12 ноября в 22^h03^m с h=280±9 км, для которого был определен механизм очага [15]. Данное землетрясение реализовалось под воздействием преобладающего напряжения растяжения, напряжение сжатия было близвертикально. Подвижка в очаге носила характер сброса (табл. 6).

В Охотском море (№8) отмечено усиление глубокофокусной сейсмической активности. Здесь зарегистрировано 46 толчков с гипоцентрами на глубине h=85-608 км, что в 1.4 раза больше их числа в 1996 г., а энергия в 15 раз выше [13,14]. Большинство землетрясений произошло вдоль северо-западной границы Курильской котловины (рис. 1). 28 ноября в $06^{h}10^{m}$ зарегистрировано первое из двух наиболее сильных землетрясений района: ощутимый (I=3-4 балла) толчок (45) с MLH=5.6, MSH=5.9, h=398±8 км. По оперативным данным Японии интенсивность сотрясений не превышала II балла по шкале JMA, что соответствует 3-4 баллам по шкале MSK-64. Второй по величине толчок (46) отмечен 20 декабря в $13^{h}26^{m}$ с MLH=5.7, MSH=6.0, h=608±8 км на северовостоке Охотского моря в 200 км от западного побережья п-ва Камчатки. Определены механизмы очагов для 6 землетрясений [15]. Очаги четырех из них (12,33,44,45) с эпицентрами в северозападной части Курильской котловины характеризуются взбросовыми и надвиговыми подвижками под воздействием сжимающих напряжений. Механизмы очагов землетрясений (17) и (46) характеризуются подвижками типа сброс и сдвиг, соответственно (табл. 6). Сейсмический процесс развивался неравномерно (рис. 3).

Анализируя данные каталога землетрясений [14] в целом, можно отметить, что наибольшая сейсмическая активность наблюдалась в районе Средних и Южных Курильских островов, а также в восточной части о. Хоккайдо (рис. 1, табл. 3). Анализ каталога механизмов очагов землетрясений [15] позволяет оценить напряженное состояние среды и выявить характерные типы подвижек в очагах курило-охотских землетрясений за 1997 г. (табл. 6-8). В большинстве случаев в очагах землетрясений на глубинах h=0-80 км и h=81-300 км действовали близгоризонтальные напряжения сжатия и более крутые напряжения растяжения, за исключением очагов в Парамуширском (№ 1) и Северо-Итурупском (№ 4) районах. Наиболее распространенными в верхнем интервале глубин были подвижки типа взброс, сброс, сдвиг, в промежуточном интервале – взрез и сброс. Для глубоких землетрясений с h>300 км и эпицентрами в Охотском море наиболее представительный тип подвижки – взброс и пологий надвиг (табл. 8).

Дислокации		Интервал глубин, км								
	0-30	31-80	81-300	>300						
взброс	50%	26%	17.6%	33%						
сброс	16.7	26	23.5	17						
сдвиг	-	21	17.6	17						
пологий надвиг	16.7	11	11.8	33						
взрез	16.6	16	29.5	-						

Таблица 8. Процентное соотношение типов дислокаций в Курило-Охотском регионе в 1997 г.

Сравнительный анализ параметров графика повторяемости мелкофокусных землетрясений (h≤80 км) за 1994-1997 гг. (табл. 9) показывает постепенное снижение сейсмической активности Курило-Охотского региона на протяжении последних четырех лет.

Таблица 9. Параметры графика lgN=a-b MLH повторяемости землетрясений Курило-Охотского региона с h=0-80 км

Год	Интервал MLH	a	b	$\sigma_{\lg N}$
1994	4.5-6.5	6.57	0.93	0.30
1995	4.5-6.5	7.06	1.01	0.14
1996	4.5-6.5	6.91	1.06	0.12
1996	4.5-7.0	6.41	0.95	0.18
1997	4.0-6.0	6.47	1.01	0.27

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1997 год. 1997-1998. / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ЦОМЭ ИФЗ РАН.
- 2. Bulletin of the International Seismological Centre (for 1997). 1998-1999. Ньюбери: Изд-во ISC.
- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. 1989. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). М.: Наука. С. 32-51.
- 4. **Миталева Н.А., Бойчук А.Н. 1988.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука. С. 144-154.
- 5. Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. 1996. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. М.: Наука. С. 91-100.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьев С.Л. 1979. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений. М.: Наука. С. 45-58. (Вычислительная сейсмология; Вып. 12).
- 7. Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. 1977. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями

геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. М.: Наука. С. 67-75.

- 8. Соловьёв С.Л., Соловьёва О.Н. 1967. Скорость колебания земной поверхности в объемных волнах неглубокофокусных курило-камчатских землетрясений на расстояниях до 17°. Изв. АН СССР. Физика Земли. № 1. С. 37-60.
- 9. Соловьёв С.Л., Соловьёва О.Н. 1967. Соотношение между энергетическим классом и магнитудой Курильских землетрясений. Физика Земли. №2. С. 13-23.
- 10. Соловьёва О.Н., Соловьёв С.Л. 1968. Новые данные о динамике сейсмических волн не глубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука. С. 75-97.
- 11. Вермишева Л.Ю., Гангнус А.А. 1977. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. №3. С. 103-109.
- 12. Давыдова Н.А., Рудик М.И., Бобков А.О., Фокина Т.А. 2001. Курило-Охотский регион // Землетрясения Северной Евразии в 1995 году. М.: Изд-во ОИФЗ РАН. С. 87-94.
- 13. Давыдова Н.А., Рудик М.И., Бобков А.О., Фокина Т.А. 2001. Курило-Охотский регион / Землетрясения Северной Евразии в 1996 году. М.: Изд-во ОИФЗ РАН. С. 110-118.
- 14. Поплавская Л.Н., Фокина Т.А., Давыдова Н.А. (отв. сост.), Брагина Г.И., Коваленко Н.С. Пиневич М.В. Курило-Охотский регион. См. раздел III в наст. сб. (на CD).
- 15. Рудик М.И. (отв. сост.). Курило-Охотский регион. См. раздел IV в наст. сб. (на CD).