ОЧАГОВЫЕ ПАРАМЕТРЫ НАИБОЛЕЕ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ

А. И. Захарова, Л. С. Чепкунас

Изучение очаговых параметров (основных и динамических) проведено для восьми наиболее сильных землетрясений Земного шара с магнитудами ≥ 6.5 . Рассмотрены следующие основные параметры: время возникновения t₀, координаты гипоцентра φ,λ,h и магнитуды MPSP, MPLP, MS, Ms, m_b, Mw; динамические параметры: сейсмический момент M₀, длина разрыва в очаге L, сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, величина подвижки u, элементы механизмов очагов.

Основные параметры очагов землетрясений представлены в табл. 1, где I – данные Сейсмологического бюллетеня ЦОМЭ ОИФЗ РАН [1]; II, III – данные Международного сейсмологического бюллетеня (ISC) [2]. Значения гипоцентров в I и II получены по временам первых вступлений Р-волн на основе годографа Джеффриса-Буллена [3], но по разным системам наблюдений, в III – по методу тензора момента центроида [4].

№	Дата,	Вариант	t ₀ ,	Ги	поцентр)		Магн	итуды		Район
	д м		ч мин с	φ°, N	λ°, Ε	h,	Mw	MPSP,	MPLP MS,		
				•		КМ		m _b		Ms	
1	04.02	Ι	10 37 47.9	37.75	57.24	10		6.4	6.4	6.6	Иран-Туркмения, пограничная область
		II	10 37 51.2	37.74	57.29	36		5.8		6.6	
		III	10 37 52.5	37.82	57.50	15	6.5				
2	27.02	Ι	21 08 07.1	29.78	68.24	33		6.7	6.9	6.8	Пакистан
		II	21 08 02.7	29.96	68.20	34		6.1		6.9	
		III	21 08 13.6	29.74	68.13	15	7.1				
3	10.05	Ι	07 57 30.2	33.98	59.81	7		7.0	6.9	7.0	Иран
		II	07 57 30.0	33.88	59.82	7		6.2		7.1	
		III	07 57 49.8	33.58	60.02	15	7.2				
4	08.11	Ι	10 02 53.2	35.28	87.38	33		6.5	7.1	7.7	Тибет
		II	10 02 53.4	35.12	87.37	38		6.0		7.4	
		III	10 03 03.4	35.33	86.96	16	7.5				
5	05.12	Ι	11 26 54.8	54.88	161.95	33		7.0	7.2	7.9	У восточного побережья Камчатки
		II	11 26 53.8	54.80	162.01	25		6.1		7.4	
		III	11 27 21.3	54.31	161.91	34	7.8				
6	05.12	Ι	18 48 22.2	53.71	161.60	33		6.4	6.5	6.7	У восточного побережья Камчатки
		II	18 48 20.7	53.72	161.72	17		6.1		6.5	
		III	18 48 28.3	53.68	161.96	16	6.5				
7	06.12	Ι	10 59 10.0	53.94	161.93	36		6.0	6.3	6.5	У восточного побережья Камчатки
		II	10 59 09.6	53.95	161.87	29		5.6		6.1	
		III	10 59 14.9	53.85	162.29	18	6.1				
8	07.12	Ι	17 56 18.8	54.76	162.77	33		6.2	6.4	6.6	У восточного побережья Камчатки
		II	17 56 17.4	54.64	162.83	22		5.4		6.2	
		III	17 56 22.1	54.50	163.08	15	6.2				

Таблица 1. Сведения о землетрясениях 1997 г.

Различия в параметрах t₀, φ, λ, h по I и II в большинстве случаев находятся в пределах погрешности их определений. Однако, как отмечалось и ранее, например в [5], для ряда землетрясений наблюдаются расхождения в магнитудах, достигающие 0.4-0.8 единиц MS, что превышает допустимые погрешности расчета. В этих случаях, при необходимости, можно провести дополнительный анализ данных. Как следует из табл. 1, самые сильные землетрясения года произошли на относительно небольших глубинах, причем половина из них (четыре из восьми) – в Трансазиатском поясе сейсмичности, другая – в Тихоокеанском поясе.

Механизмы очагов для всех 8 землетрясений приведены в табл. 2 по данным [2]. Они получены для модели двойной пары сил из решения по методу тензора момента центроида [4]. Стереограммы механизмов очагов в проекции нижней полусферы даны на рис. 1.

Рис. 1. Механизмы очагов землетрясений №№1-8

1 - нодальные линии; 2,3 - оси главных напряжений сжатия и растяжения, соответственно; зачернены области сжатия.

№	Дата,	t ₀ , h]	Магнитуды		Оси главных напряжений							Нодальные плоскости				
	д м	ч мин с	КМ	Mw	MS/n	MPSP	Т		N		Р		NP1		NP2			
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	2	3	4	5	6	7	8	59	10	11	12	13	14	15	16	17	18	19
1	04.02	10 37 47.9	18*	6.5	6.6/14	6.4/30	0	282	77	14	13	192	328	81	-171	236	81	-9
2	27.02	21 08 01.7	32*	7.1	6.8/11	6.7/21	57	344	8	87	31	182	298	15	122	85	77	82
3	10.05	07 57 30.2	13*	7.2	7.0	7.0	5	113	83	341	5	203	248	83	0	338	90	-173
4	08.11	10 02 53.2	38*	7.5	7.7/7	6.5/18	16	301	69	164	14	35	79	69	2	348	88	159
5	05.12	11 26 54.8	29*	7.8	7.9/16	7.0/15	66	321	6	217	23	124	202	23	74	39	68	97
6	05.12	18 48 22.2	22*	6.5	6.7/32	6.4/40	63	279	4	18	27	110	212	19	104	17	72	85
7	06.12	10 59 10.0	28*	6.1	6.5/28	6.0/35	69	325	7	218	20	125	204	26	75	41	65	97
8	07.12	17 56 18.8	31*	6.2	6.6/26	6.2/27	60	308	2	214	30	123	205	15	81	35	75	93

Таблица 2. Параметры механизмов очагов (метод ТМЦ по HRVD из [2])

Примечание. В графах 2,3,6,7 даны параметры землетрясений по [1]; в графе 4 дана глубина очага по волнам типа pP-P, отраженным от дневной поверхности вблизи эпицентра из [2]; в графе 5 дана моментная магнитуда из [2].

Очаг землетрясения (№1), названного Боджнурдским [6], возник на границе Иран-Туркмения под действием напряжений растяжения, несколько превышающих по величине напряжения сжатия. Тип движения представлен сдвигами с незначительной компонентой сброса по обеим нодальным плоскостям, имеющим крутое падение (около 80°). При этом одна нодальная плоскость имеет юго-западное простирание (STK=237°), другая – северо-западное (STK=328°).

Землетрясения в Иране (№3) и Тибете (№4) произошли под действием напряжений сжатия и растяжения, близких по величине. Для землетрясения №3 в движении по обеим плоскостям крутого залегания (северо-западного и юго-восточного направлений) отмечается практически чистый сдвиг. Для землетрясения №4 одна плоскость имеет близмеридиональное простирание (STK=348°), другая – близширотное (STK=79°), в движении по обеим плоскостям также преобладает сдвиговая компонента.

Землетрясение в Пакистане (№2) возникло в основном под действием напряжений сжатия, ориентированных в южном направлении. По нодальной плоскости близширотного простирания

(STK=85°) и крутого падения (DP=77°) в движении преобладает взбросовая компонента, по плоскости северо-западного простирания (STK=298°) и пологого залегания (DP=15°), подвижка представлена надвигом.

Землетрясение №5 – это сильное Кроноцкое землетрясение [7] у восточного побережья Камчатки, а землетрясения №№6-8 – его сильнейшие афтершоки. Механизм этих землетрясений типичен для очагов региона. Землетрясения возникли под действием напряжений сжатия, ориентированных в юго-восточном направлении. Обе нодальные плоскости имеют северовосточное простирание, подвижки по ним представлены взбросами.

Динамические параметры рассчитывались по методике [8,9] на основе спектров продольных волн, записанных цифровой аппаратурой IRIS на станции "Обнинск". Станционные спектры, исправленные за аппаратуру и условия распространения Р-волн, т.е. приведенные к очагу, показаны на рис. 2. Спектральные характеристики очагов (уровень Ω_0 длиннопериодной ветви спектра, частота f_{n} точки перелома спектра, частота f_0 его угловой точки) и их динамические параметры (сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения), а также характеристики разрыва в очагах (длина L и подвижка u) представлены в табл. 3. На основе данных этой таблицы построены зависимости между M_0^{OBN} и M_0^{HRVD} , а также между M_0^{OBN} и Mw по данным Гарвардского центра США [4].

№	Ms	Δ°	Ω ₀ *10 ⁻⁴ , м·с	f _n *10 ⁻² , Гц	f ₀ *10 ⁻² , Гц	M₀*10 ¹⁹ , Н∙м OBN	M₀*10 ¹⁹ , Н∙м HRVD	L*10 ³ , м	Δσ*10 ⁵ , Η/м ²	ησ*10 ⁵ , Η/м ²	_, М
1	6.6	22.3	0.52	12.0	34.7	0.52	0.67	14	66	29	1.13
2	6.8	34.0	0.76	7.4	22.4	2.00	5.2	22	66	18	1.50
3	7.0	26.6	0.79	10.7	29.5	1.20	7.3	16	102	50	1.99
4	7.7	39.9	1.58	6.3	24.5	5.20	22.0	42	24	151	1.07
5	7.9	61.6	5.75	4.2	10.0	22.00	53.2	49	65	71	3.33
6	6.7	62.5	0.24	2.9	18.2	0.93	0.54	27	16	27	0.46
7	6.5	62.4	0.12	7.9	20.9	0.81	0.15	24	20	15	0.51
8	6.6	61.9	0.16	6.3	15.8	0.60	0.21	30	8	29	0.24

Таблица 3. Характеристики спектров Р-волн и динамические параметры очагов землетрясений из табл. 1 по записям станции "Обнинск"

Зависимости M_0^{OBN} от M_0^{HRVD} и M_0^{OBN} от Mw показаны на рис. 3,4. Уравнения ортогональной регресссии имеют вид:

$$\lg M_0^{OBN} = (7.91 \pm 2.17) + (0.58 \pm 0.13) \lg M_0^{HRVD}.$$

Коэффициент корреляции r=0.87.

$$lgM_0^{OBN} = (13.11 \pm 1.51) + (0.89 \pm 0.19)$$
 Mw.

Коэффициент корреляции r=0.88.

Рис. 3. Зависимость величины M₀, полученной авторами, от M₀(HRVD)

Рис. 4. Зависимость величины M₀, полученной авторами, от моментной магнитуды Mw(HRVD)

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 1997 год. 1997-1998. / Отв. ред. О.Е. Старовойт. Обнинск: Изд-во ЦОМЭ ИФЗ РАН.
- 2. Bulletin of the International Seismological Centre (for 1997). 1999-2000. Berkshire, ISC.
- 3. Jeffreys H., Bullen K.E. 1967. Seismological tables. London: Office of the British Association. Burlington House. W.1. 50 p.
- 4. Dzievonski A., Chou T. and Woodhouse J. 1981. Determination of earthquake source parameters from waveform data for stadies of global and regional seismisity // J. Geophys. Res. V.86. №B4. P. 2825-2852.

- 5. Захарова А.И., Чепкунас Л.С. 2002. Очаговые параметры сильных землетрясений Земли // Землетрясения Северной Евразии в 1996 году. М.: Изд-во ОИФЗ РАН. С. 165-170.
- 6. Гаипов Б.Н., Голинский Г.Л., Петрова Н.В., Ильясов Б.И., Мурадов Ч.М., Рахимов А.Р., Безменова Л.В., Гарагозов Д., Ходжаев А., Баймурадов К., Рахманова М.С. Боджнурдское землетрясение 4 февраля 1997 года с MS=6.6, I₀=8 (Копетдаг). См. раздел II (Макросейсмические обследования) в наст. сб.
- Левина В.И., Гусев А.А., Павлов В.М., Иванова Е.И., Левин В.Е., Рябинин Г.В., Хаткевич Ю.М., Гусева Е.М., Салтыков В.А., Зобин В.М. Кроноцкое землетрясение 5 декабря 1997 года с Мw=7.8, I₀=8 (Камчатка). См. раздел II (Макросейсмические обследования) в наст. сб.
- 8. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. 1985. Спектры Р-волн в задаче определения динамических параметров очагов землетрясе-ний. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. №2. С. 60-70.
- 9. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. 1989. Спектры Р-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. №2. С. 66-79.