Беларусь

А.Г. Аронов, Р.Р. Сероглазов, Т.И. Аронова

Территория Беларуси (φ=51°÷56°N, λ=23°÷33°E) расположена на западе древней Восточно-Европейской платформы (ВЕП) и, в соответствии с сейсмотектоническим районированием [1], относится к слабоактивной зоне, в пределах которой по литературным и архивным данным [2], а также инструментальным наблюдениям (бюллетени сейсмических станций "Солигорск", "Минск" и "Нарочь") выявлены очаги сейсмических событий с магнитудой <4. Карта их эпицентров представлена на рис. 1, в основу которой положен каталог событий за 1887-1997 гг. [3]. Характеристика пяти ощутимых толчков, внесенных также в Унифицированный каталог землетрясений Северной Евразии [4], приведена в табл. 1.

Рис. 1. Карта эпицентров сейсмических событий Беларуси и прилегающих территорий за 1887-1997 гг. 1 – магнитуда; 2 – государственная граница.

Дата, лмгол	Время местное	Эпицентр $\omega^{\circ} N \lambda^{\circ} E$		Место ощущения	Макросейсмическая характеристика	K _P	І, балл
1	2	$\begin{array}{c c} \varphi, \Pi, \kappa, L \\ \hline 3 & 4 \end{array}$		5	6	7	8
10.12.1887		54.2	28.5	г. Борисов, Борисовский	Подземный гул, подобно грому; во многих		6
				уезд Минской губернии	домах разбились стекла.		
				(в нескольких местах)	-		
28.12.1908	около 02ч.	54.6	25.8	пос. Гудогай	Страшный гром, звон оконных стекол,		7
				Островецкого района	впечатление, что падает дом; животные		
				(хутор Сержанты)	падали на колени.		
				д. Быстрица	Шум как от поезда, заколебался несколько		5-6
				_	раз дом, как будто подвинулся, упала пила,		
					проснулись люди, на отдельных участках		
					трещины на земле.		

Дата, дмгод	Время местное	Эпицентр φ°, N λ°, E		Место ощущения	Макросейсмическая характеристика		I, балл
1	2	3 4		5	6	7	8
10.05.1978	09ч. 05мин	52.8	27.7	г. Солигорск и его окрестности (д. Кулаки)	Ощущался гул, дребезжали оконные стекла, раскачивались висячие предметы, слышался скрип мебели и полов на первых этажах деревянных зданий; в шахте калийного комбината произошел обвал кровли штрека (общий вес обвалившихся пород ÷3000 т).	9.0	4–5
02.12.1983	00ч. 26мин	52.95	27.81	в 40 км к северо-востоку от г. Солигорска	Гул, дребезжание стекол, раскачивание висячих предметов, скрип полов, мебели, отдельные трещины в штукатурке.	9.0 ¹	4-5
17.10.1985	04ч. 32мин	52.9	28.4	в 10 км от г. 1 луска и в 70-80 км от г. Солигорска	Раскачивание висячих предметов.	9.5	5-4

Примечание. В графе 8 приведена балльность по шкале MSK-64 [5]; ¹ – зарегистрировано с/ст "Солигорск", "Минск", "Нарочь"; ² – зарегистрировано с/ст "Минск", "Нарочь", "Солигорск" [3].

Землетрясение, происшедшее 10 мая 1978 г. в районе д. Кулаки (вблизи г. Солигорска), было зарегистрировано сейсмическими станциями "Минск" (∆≈180 км) и "Обнинск"(∆≈600 км). Его энергетический класс по записям этих станций составил К_Р=9.0.

Землетрясение 2 декабря 1983 г. произошло на пересечении доплатформенного Стоходско-Могилёвского и герцинского Северо-Припятского суперрегиональных разломов. Оно зарегистрировано сейсмическими станциями "Солигорск" и "Минск", по данным которых К_Р=9.0. Интенсивность сотрясений в обоих случаях достигала 4-5 баллов. Наличие макросейсмических данных для этих толчков позволило оценить глубину их очагов на основе уравнения макросейсмического поля:

$$I = bM - v lg(\Delta^2 + h^2)^{\frac{1}{2}} + c$$
 (1)

где M, Δ и h – магнитуда, эпицентральное расстояние и глубина, b, v и c – константы. Оценка энергетического класса производилась по номограмме Раутиан [6]. Для перевода в магнитудную шкалу использовалось соотношение [7]:

$$K_{\rm P} = 4 + 1.8 \, {\rm M}.$$
 (2)

Значения констант, входящих в уравнение (1), определяются региональными особенностями. Например, средние значения, принятые в практике соответственно равны: b=1.5, v=3.5, c=3.0 [8]. Применяя эти значения, получаем h≈4 км. В работе [9] приведены значения констант, полученные для платформенных территорий со слабым затуханием: b=1.5, v=2.5, c=1.0. В этом случае значение глубины h≈1 км, т.е. оценка глубины очага 02.12.1983 г. составляет h=1-4 км.

Сейсмические воздействия, ощущаемые на территории республики, возможны также от удаленных землетрясений из района гор Вранча в Карпатах. Так, например, в соответствии с картой изосейст Карпатского землетрясения 4.03.1977 г. [10,11], территория Беларуси попадает целиком в 4-х-балльную зону сотрясений. Опубликованных сведений о том, как ощущались другие Карпатские землетрясения, в частности самое сильное (M=7.3) в XX в. землетрясение, происшедшее 10.11.1940 г. в 01^h39^m [12], нет. Однако были проведены специальные исследования по оценке возможных сотрясений в г. Минске от Карпатских землетрясения [13]. Установлено, что для "проектного землетрясения" (ПЗ) и "максимального расчетного землетрясения" (МРЗ), понятий, которыми пользуются при проектировании важных инженерных сооружений, интенсивность I возможного сейсмического воздействия в г. Минске от Карпатских землетрясений из других сейсмоактивных зон на территории Беларуси не отмечены.

Современная сейсмичность Беларуси в основном проявляется в районе Старобинского месторождения калийных солей (рис. 2). Административный центр этого района г. Солигорск расположен в непосредственной близости от шахтных полей и других сооружений горнодобывающей промышленности. Инструментальные сейсмологические наблюдения здесь были начаты в 1983 г. на сейсмической станции "Солигорск", где сейсмоприемники СМ-3 и осциллографы H-002 были установлены в шахте на глубине 586 м [14]. За период 1983-1997 гг. этой станцией зарегистрировано около 600 сейсмических событий [3]. Из рис. 2 видно, что абсолютное большинство событий происходит за пределами шахтных полей. Это характерное

явление для наведенной шахтной сейсмичности, когда в результате эволюции сейсмического процесса область эпицентров со временем расширяется. Аналогичные закономерности наблюдаются и в других местах [15,16].

Рис. 2. Карта эпицентров Солигорских толчков за 1983-1997 гг.

1 – сейсмическая станция "Солигорск"; 2 – эпицентр; 3 – зона тектонических нарушений; 4 – район Старобинского месторождения калийных солей.

Сеть сейсмических станций начала создаваться в Беларуси еще раньше: (первая станция "Минск (Плещеницы)" начала выпускать бюллетень удаленных землетрясений в январе 1963 г., а к 1997 г. сеть включала уже пять станций (рис. 3), характеристика и параметры регистрирующей аппаратуры которых приведены в табл. 2.

Рис. 3. Сейсмические станции на территории Беларуси в 1997 г. 1 – сейсмическая станция; 2 – город; 3 – государственная граница.

Станция	Да	Координаты			Аппаратура					
Название	Код	открытия	закрытия	φ°, N	λ°, E	h,	Тип	Компо-	V _{max}	ΔT_{max} ,
				-		М	прибора	нента		c
Минск	MIK	03.01.63		54.50	27.88	196	ССМ-СКМ	N,E,Z	12000	1.1-1.5
(Плещеницы)							ССМ-СКД	N,E,Z	540	0.15-10.0
Нарочь	NAR	17.08.79	30.09.89	54.92	26.73	167	СД	N,E,Z	300	10.0-50
							СКМ	N,E,	12800	1.0 - 1.4
								Ζ	13480	1.0-1.5
Нарочь	NAR	01.10.89		54.90	26.78	189	ССМ-СКМ	Ν	11000	0.75 - 1.0
								E	12000	0.75-0.9
								Z	13000	0.75 - 1.0
							ССМ-СКД	Ν	1100	0.50-9.0
								E	1100	0.70-9.0
								Z	1100	0.60-9.0
							ССМ-СД	N,E	120	3.0-40
								Z	130	3.0-40
							ССМ-КПЧ	N,E,Z	100	0.60-9.0
Гомель	GML	02.04.82	01.02.89	52.30	31.00	132	CKM	N,E	14000	0.9 - 1.2
								Z	17000	0.9 - 1.2
		01.02.89		52.60	31.08	159	CKM	N,E	14000	0.7 - 2.0
								Ζ	17000	0.7 - 2.0
Солигорск	SOL	01.01.83		52.75	27.78	-436	CKM	Ν	6000	0.6-1.3
								E	4300	0.6-0.9
								Z	7500	0.6-1.4
Брест	BRT	06.11.91		52.53	23.73	170	CKM	N,E,Z	8000	0.5 - 1.2

Таблица	2.	Сейсмические с	станции	Беларуси,	работавшие в	в 1997 г	г., и их	параметры
---------	----	----------------	---------	-----------	--------------	----------	----------	-----------

Методика обработки. Локализация инструментально зарегистрированных сейсмических событий в районе г. Солигорска произведена по двум параметрам: эпицентральному расстоянию и азимуту на эпицентр. Эпицентральные расстояния определялись по разнице времен вступлений S-и P- волн с использованием регионального годографа А.Г. Аронова [17], рассчитанного по осредненному скоростному разрезу запада ВЕП (рис. 4). Применимость этого годографа была проверена на нескольких карьерных взрывах, производимых в районе пос. Микашевичи, примерно в 100 км южнее Солигорска. Расчеты по определению азимутов на эпицентры проводились на основе использования полярности первых вступлений в соответствии с общепринятой в сейсмологической практике методикой. В [3] географические координаты приведены только для тех сейсмических событий, для которых удалось определить азимут.

Приближенную оценку глубин h очагов можно произвести по углам выхода на поверхность сейсмических волн [18]. На основе скоростной модели среды было рассчитано пространственное поле изохрон, которое позволило определить h по разности времен пробега S- и P- волн и по углу выхода P- волн. Упрощенный скоростной разрез среды, принятый для построения поля изохрон, был выбран в виде слоя на полупространстве. Предполагалось, что слой моделирует осадки, мощность которых в среднем равна 2 км и в пределах которых расположены соляные месторождения и шахтные выработки. Расчеты, произведенные для такого разреза с помощью построенного семейства линий пространственных изохрон, показали, что при расположении очага в осадочном слое углы с вертикалью должны быть не менее 42°. Для эпицентральных расстояний Δ <10 км первыми регистрируются прямые волны и углы с вертикалью для них будут больше 42°; для Δ >10 км в первых вступлениях наблюдаются головные волны, преломленные на границе кровли фундамента. Таким образом, если очаги расположены ниже границы кровли фундамента, то углы выхода должны быть больше 48°.

Рис. 4. Осредненный скоростной разрез земной коры запада ВЕП

Гистограммы распределения углов выхода приведены на рис. 5. Различие между кажущимся и истинным углом выхода обусловлено наложением выходящего на дневную поверхность сейсмического луча и отраженного от этой поверхности [19]. В нашем случае наблюдения проводятся в шахте (на глубине примерно 600 м), поэтому отраженная от дневной поверхности волна достигнет точки наблюдения несколько позже, чем первое вступление. Запаздывание прихода отраженной от поверхности волны составляет 0.3-0.5 с и более (в зависимости от угла выхода). При этом, если полупериод волны первого вступления будет больше времени запаздывания, то возможно наложение падающей и отраженной волн, и в этом случае необходимо рассчитывать истинный угол выхода. Для меньших периодов можно ограничиться кажущимся углом. Практически на записях наблюдаются волны как больших, так и меньших периодов, поэтому на рис. 5 показаны оба варианта. Для истинного угла выхода максимум распределения приходится на диапазон до 48°, что совпадает с расчетным углом выхода для головной волны, рефрагированной от границы кровли кристаллического фундамента. Таким образом, можно предположить, что гипоцентры большинства сейсмических событий находятся в осадочном слое. Вместе с гистограммами на рис. 5 показаны также функции плотностей нормальных распределений, рассчитанных по оценкам параметров, сделанных на основе соответствующих выборок значений углов выхода. Экспериментальные распределения значительно отличаются от нормальных. Нулевая гипотеза о нормальности распределений отвергается на уровне значимости менее 0.01 по критерию χ^2 . Вид гистограммы распределения истинных углов выхода несимметричен. Со стороны малых углов наблюдается более пологий спад, а со стороны больших углов – более крутой. Отклонение от нормального распределения исключает полностью случайный характер выборки. Пологий спад в сторону малых углов может быть связан с прямыми и отраженными от границ кровли фундамента волнами от очагов в осадочном чехле. Около 20% от общего числа землетрясений попадают в диапазон 48-80°, т.е. очаги этих событий предположительно находятся в гранитном слое.

Рис. 5. Гистограммы частот распределения углов выхода сейсмических лучей в сопоставлении с соответствующими функциями плотностей нормальных распределений (сплошные линии – истинный угол выхода, пунктирные – кажущийся)

Классификация величины энергии событий на начальном этапе сейсмических наблюдений в Беларуси проводилась по приближенному соотношению, часто применяемому в шахтной сейсмологии [20]:

$$E_A = k \cdot r^2 \cdot A_{max}^2 \cdot f^2 \cdot \tau \tag{3}$$

где E_A — энергия сейсмических волн в джоулях, r – гипоцентральное расстояние в м, A_{max} – максимальная амплитуда S-волн в м, τ – длительность колебаний в группе S-волн в секундах, f – частота в Гц. Коэффициент k вычисляется по формуле:

$$k = 2 \cdot \pi^{3} \cdot \rho \cdot \upsilon_{S} \cdot V^{-2} \cdot [\kappa \epsilon \cdot m^{-2} \cdot c^{-l}]$$
(4)

Здесь ρ – плотность пород в кг/м³, v_s – скорость S-волн в м/с, V – увеличение сейсмографа.

$$lgE_A = K_A \tag{5}$$

Однако, в сейсмологической практике наиболее распространено определение энергетического класса K_P по сумме максимальных амплитуд P- и S-волн, по номограмме T.Г. Раутиан [6], которая была введена в рутинную практику обработки землетрясений Беларуси в 1991 г. Одновременно был использован также самый простой и оперативный метод классификации землетрясений по общей длительности τ колебаний на записи – K_{τ} [21].

Сведение данных в единый каталог предполагает процедуру унификации в определении величины энергии событий. Поэтому по возможности было произведено переопределение энергетических классов по номограмме Раутиан. Кроме того, рассматривались попарные сочетания ($K_{\tau} \rightarrow K_A$), ($K_P \rightarrow K_A$), ($K_P \rightarrow K_{\tau}$) (рис. 6) и рассчитывались соответствующие линейные корреляционные зависимости между ними для унификации классификации тех событий, для которых не было класса K_P . Эти соотношения имеют следующий вид:

$$K_{\tau} = -(1.12\pm0.01) + (1.21\pm0.02) K_A$$

$$K_{P} = -(0.50\pm0.02) + (1.20\pm0.04) K_A$$
(6)
(7)

$$K_P = -(1.08 \pm 0.03) + (0.92 \pm 0.05) K_\tau$$
 (8)

Соотношения (6-8), полученные методом ортогональной регрессии, позволили проводить оценку энергетических классов, используя любой из вышеперечисленных методов.

Рис. 6. Соотношения между энергетическими классами, определенными разными способами:

 $K_{\tau} = f(K_A), K_P = f(K_A), K_P = f(K_{\tau})$

О природе землетрясений. Как указано в [14], вопрос о природе Солигорских землетрясений "весьма актуален в научном и практическом отношении. Учитывая происходящее в течении длительного времени изменения напряженного состояния геологической среды, вызванные выемкой и перемещением до 35 000 000 т в год горных пород и их складированием в соляных отвалах, можно предположить, что Солигорские землетрясения связаны с наведенной сейсмичностью и имеют техногенный характер". Однако проявления сейсмичности за пределами зоны промышленных выработок служит признаком того, что начиная с определенного времени сейсмический процесс начинает контролироваться в основном региональными геодинамическими факторами и в меньшей степени зависит от горнодобывающей деятельности. Это утверждение основывается, по крайней мере, на двух фактах: во-первых, "тяготением" основной массы эпицентров к областям пересечения разломных зон, что достаточно хорошо видно на карте распределения эпицентров (рис. 2). Во-вторых, практически полным отсутствием связи между интенсивностью горнодобывающей деятельности и сейсмичностью. В качестве параметра, характеризующего интенсивность горных работ, может служить такая величина, как объем добычи руды, а в качестве величины уровня сейсмичности – общее число зарегистрированных за определенный период времени событий. На рис. 7 приведена зависимость годовых значений объемов добычи руды от числа зарегистрированных событий. Нулевая гипотеза о равенстве нулю коэффициента корреляции не отвергается на уровне значимости $\alpha = 0.1$ в соответствии с распределением Стьюдента, что говорит об отсутствии непосредственной связи процессов горнодобывающей деятельности и сейсмичности. Это подтверждает и распределение времени возникновения сейсмических событий в суточном интервале. Если предположить, что сейсмичность связана с работами в забойной зоне, то в период ремонтных работ должно было бы наблюдаться затишье. Однако на самом деле это распределение имеет равномерный характер (рис. 8). Нулевая гипотеза о равномерности распределения выполняется на уровне значимости α=0.05 в соответствии с критерием χ^2 .

Согласно классификации А.А. Маловичко [16] сейсмические события энергетического класса К<4 относятся к горным ударам, события 4<К<8 относятся к горно-тектоническим ударам, а события с энергетическим классом К>8 рассматриваются, как техногенные землетрясения. Данная классификация основана на различиях природы сейсмических событий, возникающих в результате добычи твердых полезных ископаемых шахтным способом. Различия в генезисе событий разного энергетического диапазона отражаются в параметрах сейсмического режима, в частности, в различном характере графика повторяемости. Этим, по всей вероятности объясняется нелинейный характер графика повторяемости и его отличие от процессов характерных для тектонических землетрясений.

Рис. 7. Годовые числа сейсмических событий (1) и объемов добычи руды (2)

Распределение энергии сейсмических событий по годам и значения суммарной высвободившейся энергии приведены в табл. 3. Временной ход суммарной годовой энергии в основном определяется числом происшедших сейсмических событий.

Рис. 8. Распределение числа сейсмических событий в пределах суток

Таблица 3. Распределение числа событий по энергетическим классам К_Р и суммарная сейсмическая энергия по годам

Год			K _P	N_{Σ}	$\Sigma E*10^9$,		
	5	6	7	8	9	_	Дж
1983		8	4	10	1	23	2.2
1984	2	10	21	12		45	2.5
1985		1	9	12	1	23	5.0
1986		3	13	29		45	5.3
1987		5	10	5		20	1.0
1988	7	8	9	2		26	0.5
1989	2	1	2	7		12	1.6
1990	2	17	25	45		89	7.7
1991		6	11	13		30	3.0
1992	1	2	10			13	1.7
1993		2	10	20		32	4.8
1994	1	4	15	16		36	2.7
1995	1	6	12	25		44	4.2
1996	1	4	23	46		74	8.2?
1997	17	22	31	14		84	2.6
Итого	34	98	197	265	2	596	50.8

Сейсмотектоническая обстановка. В целом Солигорский геодинамический полигон находится в зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы и в соответствии с сейсмотектонической картой запада ВЕП относится к Северо-Припятская сейсмогенной зоне, в пределах которой могут возникать землетрясения с магнитудой M_{max} =4.0 и эффектом сотрясаемости на земной поверхности в 6-7 баллов. Изучение современной геодинамики территории Припятского прогиба показало, что активизация древних разрывных нарушений проявляется в форме резкой дифференциации современных движений на границах тектонических блоков в сочетании с инструментально установленным фактором местной сейсмичности [1].

Литература

- 1. Айзберг Р.Е., Аронов А.Г., Гарецкий Р.Г., Карабанов А.К., Сафронов О.Н. 1997. Сейсмотектоника Беларуси и Прибалтики // Литосфера. № 7. Минск: Изд-во Ин-та геол. наук НАН Беларуси. С. 5-17.
- Боборыкин А.М., Гарецкий Р.Г., Емельянов А.П., Сильдвээ Х.Х., Сувейдис П.И. 1993. Землетресения Беларуси и Прибалтики // Современное состояние сейсмических наблюдений и их обобщений. Минск: Изд-во Ин-та геохимии и геофизики АН Беларуси. С. 29-39.

- 3. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И. Беларусь (1887-1997 гг.). См. раздел III в наст. сб. (на CD).
- 4. Унифицированный каталог землетрясений Северной Евразии с древнейших времен по 1990 г. 1995. // Государственная научно-техническая программа Российской Федерации по проблеме "Сейсмичность и сейсмическое районирование Северной Евразии" <u>http://www.segis.ru</u> Отв. ред. Н.В. Кондорская, В.И. Уломов.
- 5. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). 1965. Шкала сейсмической интенсивности MSK-64. М.: Изд-во МГК АН СССР. 11 с.
- 6. **Раутиан Т.Г. 1964.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. М.: Наука. С. 88-93. (Тр. ИФЗ АН СССР, №32 (199)).
- 7. **Раутиан Т.Г. 1960.** Энергия землетрясения // Методы детального изучения сейсмичности. М.: Изд-во АН СССР. С. 75-114. (Тр. ИФЗ АН СССР, №9 (176)).
- 8. Шебалин Н.В. 1977. Опорные землетрясения и уравнения макросейсмического поля // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука. С. 20-30.
- 9. Карпатское землетрясение 1986 года. 1990. Кишинев: Изд-во Штиинца. 334 с.
- 10. Костюк О.П. (отв. сост.), Руденская И.М., Слука Н.Т. 1981. Региональный каталог землетрясений Карпат // Землетрясения в СССР в 1977 году. М.: Наука. С. 149-150.
- 11. Ананьин И.В. 1980. Макросейсмические проявления Карпатского землетрясения 4 марта 1977 г. на европейской части территории СССР // Землетрясения в СССР в 1977 году. М.: Наука. С. 10-14.
- 12. Костюк О.П., Москаленко Т.П. (отв. сост.), Евсеев С.В., Роман А.А., Сагалова Е.А., Шебалин Н.В. (сост.) при участии Кондорской Н.В., Попова В.М. 1977. І. Карпаты [1091-1974 гг.; М≥4.5, I₀≥5 (неглубокие землетрясения); т_{PV}≥5.5, I₀≥6 (глубокие землетрясения)] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука. С. 36-54.
- 13. Кензера А.В., Пронишин Р.С., Вербицкий С.Т., Бень Я.А., Боборыкин А.М., Емельянов А.П., Сероглазов Р.Р. 1992. Сейсмические сотрясения в Минске при Карпатских землетрясениях // Белорусский сейсмологический бюллетень. Минск: Изд-во ОНТИИ. С. 169-184.
- 14. Емельянов А.П., Боборыкин А.М., Левашев К.И., Сероглазов Р.Р. 1986. Солигорские землетрясения в Белоруссии // Землетрясения в СССР в 1983 г. М.: Наука. С. 17-18.
- 15. Пономарев В.С., Ромашев А.Н., Турунтаев С.В. 1994. Закономерности разрушения энергонасыщенных сред в проявлениях наведенной сейсмичности // Наведенная сейсмичность. М.: Наука. С. 3–91.
- Маловичко А.А., Завьялов А.Д., Козырев А.А. 2000. Горные удары // Природные опасности России. М: Изд-во "КРУК". Т.2. С. 243–293.
- 17. **Аронов А.Г. 1996.** Региональные годографы сейсмических волн запада Восточно-Европейской платформы // Сейсмологический бюллетень. Минск: Изд-во ОКЖИОП. С. 136-149.
- 18. Саваренский Е.Ф., Кирнос Д.П. 1995. Элементы сейсмологии и сейсмометрии. М.: Гостехиздат. 543 с.
- 19. Раутиан Т.Г., Серрано М., Фремд В.М., Чуй Т. 1983. Инструментальные сейсмические наблюдения и сейсмичность района Сьенфуэгос // Исследования сейсмичности малоактивных сейсмических зон (Центральная Куба). М.: Наука. С. 36-48.
- 20. Kalenda P., Slavik J., Holub K., Sglunda R. 1991. Determination of Energy of Seismic Events from records Apparatus DSLA // Publs. Inst. Geophys. Pol. Acad. Sc. M-15(235). P. 183-187.
- Маламуд А.С. 1974. Использование длительности колебаний для энергетической классификации землетрясений // Магнитуда и энергетическая классификация землетрясений. М.: Изд-во ОИФЗ АН СССР. С. 180-191.