КОПЕТДАГ

Б.Н. Гаипов, Г.Л. Голинский, Н.В. Петрова, А.Р. Рахимов, Г.Ч. Сарыева

В 1994 г. система сейсмических станций Туркменистана и методы обработки сейсмологических данных по сравнению с помещенными в [1] не изменились. В каталоге землетрясений Копетдага за текущий год и на карте эпицентров землетрясений (рис. 1) приведены все землетрясения с $K_P \ge 8.6$, зарегистрированные сетью сейсмических станций, однако анализируются только события в пределах координат региона и отдельных сейсмоактивных зон, указанных в табл. 1 и на рис. 1.

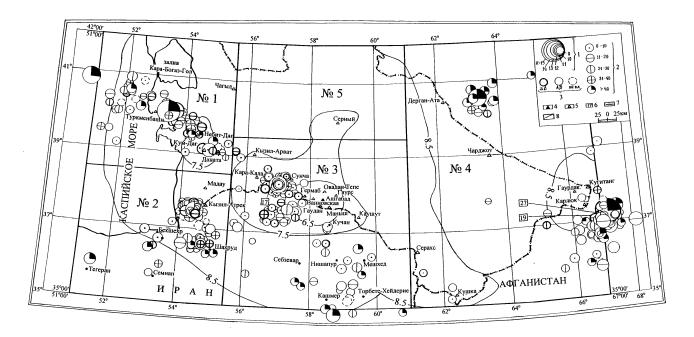


Рис. 1. Карта эпицентров землетрясений Копетдага

1 — энергетический класс; 2 — глубина h гипоцентра, км; 3 — класс точности определения эпицентра; 4, 5 — сейсмическая станция, опорная и региональная соответственно; 6 —количество землетрясений данного класса с совпадающими координатами; 7 — граница сейсмоактивного района; 8 — изолиния энергетической представительности землетрясений К_{тіп}.

<i>Таблица 1</i> . Сейсмоактивные районы	Копетдага и значение K_{min} в их пределах
--	--

$N_{\overline{0}}$	Район	$\mathbf{K}_{\mathrm{min}}$	φ_1 - φ_2 °, N	λ_1 - λ_2 °, E	$S*10^2$, км 2
1	Балхано-Каспийский	9	38.5 - 42.0	51.0 - 55.5	150
2	Эльбурский	9	35.0 - 38.5	51.0 - 55.5	160
3	Туркмено-Хорасанский	9	35.0 - 39.5	55.5 - 61.0	250
4	Восточный Туркменистан	10	35.0 - 42.0	61.0 - 67.0	420
5	Центрально-Каракумский	9	39.5 - 42.0	55.5 - 61.0	130
	КОПЕТДАГ	9	35.0 - 42.0	51.0 - 67.0	1110

В текущем году в пределах Копетдага зарегистрировано 2378 землетрясений в диапазоне энергетических классов K_P =2-14, из них 278 – с K_P ≥8.6 (табл. 2). Параметры сейсмического режима γ и A_{10} рассчитывались с энергетического уровня, соответствующего K_{min} для каждого района. В связи с происшедшими крупными землетрясениями 1993 г. [1] в 1994 г. параметр γ в целом по региону уменьшился от 0.51 до 0.45), тогда как значение сейсмической активности A_{10} почти не изменилось: 0.045 и 0.050.

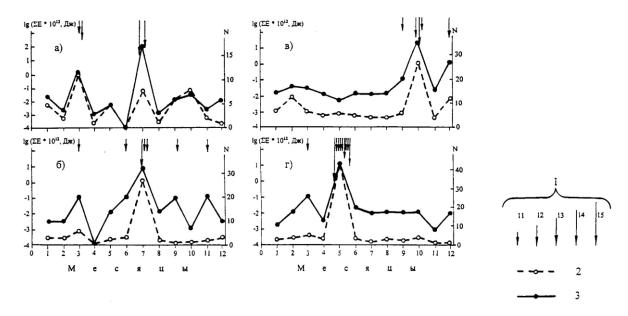
No	Район	K_{min}	K_{P}					N_{Σ}	$\Sigma E*10^{12}$,	γ	A_{10}		
			8	9	10	11	12	13	14		Дж		
1	Балхано-Каспийский	8	82	36	11	1	1	1	1	133	111.21	0.35	0.08
2	Эльбурский	9	29	32	15	6	-	1	-	83	10.78	0.38	0.11
3	Туркмено-Хорасанский	9	183	72	23	2	2	1	-	283	12.50	0.48	0.08
4	Восточный Туркменистан	10	37	36	28	7	1	1	-	110	11.98	0.47	0.05
5	Центрально-Каракумский	-	-	-	-	-	-	-	-	0	0		
	КОПЕТДАГ	9	333	176	77	16	4	4	1	611	146.47	0.45	0.045

Таблица 2. Распределение числа землетрясений по энергетическим классам K_P , суммарная энергия ΣE и количественные параметры γ и A_{10} сейсмического режима по районам

Выделившаяся в очагах землетрясений суммарная сейсмическая энергия, составляющая $14.6*10^{13}$ Дж, значительно выше энергии 1992-93 гг. (табл. 3). По сравнению с 1993 г. в регионе значительно уменьшилось число землетрясений с $K_P=11-12$ при увеличении количества сейсмических событий 9-10-х энергетических классов.

Таблица 3. Сопоставление распределения числа землетрясений 1992, 1993, и 1994 гг. по энергетическим классам и суммарной энергии

Год	$K_{ m P}$								N_{Σ}	$\Sigma E*10^{13}$,
	2-7	8	9	10	11	12	13	14		Дж
1992	2048	343	148	36	17	2	4	1	2599	14.42
1993	1922	325	157	55	23	11	1	-	2494	2.45
1994	1737	333	176	77	16	4	4	1	2378	146.47

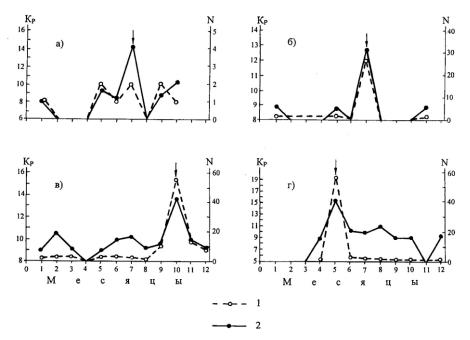

Особенностью сейсмичности 1994 г. является реализация крупных (K_P =13-14) землетрясений в четырёх сейсмоактивных районах (табл. 2). Основные сейсмические события – Янгаджинское землетрясение 1 июля в 10^h12^m на побережье Каспийского моря (K_P =14.0, MS=5.2) и Кёнекесирское землетрясение 21 октября в 11^h46^m в 50 км к юго-западу от Бахардена (K_P =13.5, MS=4.9), с интенсивностью сотрясений в эпицентре I_0 =6-7 и I_0 =7-8 баллов соответственно (см. отд. ст. в наст. сб.). Разница в балльности обусловлена различием в глубинах очагов этих землетрясений (45 и 5 км).

В 1994 г. на территории Туркменистана произошло 19 ощутимых землетрясений: 17 из них расположены в пределах Туркменистана, одно — на границе с Афганистаном и одно — с Узбекистаном. Краткие сведения о районе их возникновения и характере проявления приведены в сносках к каталогу землетрясений (см. наст. сб.). Рассмотрим особенности проявления сейсмичности в каждом из районов.

В Балхано-Каспийском районе (№1) после двухлетнего сейсмического затишья на энергетическом уровне K_P =11 [1, 2] и при последовательном уменьшении параметра γ от аномально высокого γ =0.71 в 1992 г. [2] до аномально низкого γ =0.35 в 1994 г., накопленная сейсмическая энергия высвободилась при землетрясениях в районе п. Кумдаг и на побережье Каспия, восточнее г. Туркменбаши (рис. 1, 2,a).

Кумдагское землетрясение 26 марта в $15^{\rm h}22^{\rm m}$ ($K_{\rm P}$ =11.9, MLH=4.4, $I_0^{\rm p}$ =5-6 баллов) предварялось в $14^{\rm h}20^{\rm m}$ ощутимым ($I_0^{\rm p}$ =5 баллов) форшоком с $K_{\rm P}$ =11.2, т. е. энергетическая ступень здесь меньше порядка. Очевидно, наличие форшоков и многочисленных афтершоков является характерной особенностью Кумдагской очаговой зоны. Напомним, что Кумдагское землетрясение 14.03.1983 г. в $12^{\rm h}12^{\rm m}$ с $K_{\rm P}$ =13.8, MLH=5.7 [3, 4] предварялось двумя форшоками с $K_{\rm P}$ =12.3 и 11.4, происшедшими 01.03.1983 г. в $02^{\rm h}02^{\rm m}$ и $02^{\rm h}18^{\rm m}$, и одним с $K_{\rm P}$ =13 за 17 минут до основного толчка (в $11^{\rm h}55^{\rm m}$), за которым последовала бурная афтершоковая деятельность. Судя по землетрясению 26 марта нынешнего года, эта очаговая зона активна до сих пор.

Рис. 2. Распределение по месяцам числа N землетрясений с K_P ≥8.6 и выделившейся суммарной энергии ΣE в


районах: Балхано-Каспийском (а), Эльбурском (б); Туркмено-Хорасанском (в); Восточном Туркменистане (г) 1 — момент возникновения и величина землетрясения с K_P =11-15; 2, 3 — графики изменения числа N землетрясений и суммарной их энергии ΣE соответственно.

Второй более интенсивный максимум выделившейся сейсмической энергии (рис. 2,а) связан с реализацией 1 июля в 10^h12^m Янгаджинского землетрясения (K_P =14.0, MS=5.2) и последовавшего за ним в 19^h50^m афтершока с K_P =12.9 в 35 км северо-западнее от макросейсмического эпицентра основного толчка, хотя некоторая разнесённость в пространстве этих событий, превышающая размеры очага, и характерная область афтершоков дают почву для сомнений о принадлежности второго события к афтершокам Янгаджинского землетрясения.

Механизм очага основного толчка представляет собой надвиг по плоскостям северозападного или северо-восточного простирания в условиях горизонтального сжатия и вертикального растяжения, а для афтершока в $19^{\rm h}50^{\rm m}$ — надвиг по широтной или взброс по востоксеверо-восточной плоскости (см. наст. сб.). Отметим, что подобные механизмы типичны для очагов землетрясений приподнятого и продолжающего подниматься Кубадаг-Большебалханского блока [4].

Кроме афтершока, описанного выше, Янгаджинское землетрясение не имело в июле афтершоков с $K_P \ge 7.5$ (рис. 3,а) и не сопровождалось повышением числа событий с $K_P \ge 8.6$ в Балхано-Каспийском районе в целом (рис. 2,а). Отмечено лишь небольшое повышение активности слабых ($K_P = 5-7$) толчков в окрестностях вышеупомянутых землетрясений. Это подтверждает особенность землетрясений Кубадаг-Большебалханской структуры как сильных, но более редких (по сравнению с Туркмено-Хорасанскими) сейсмических событий с меньшей степенью группирования [5, 6]. Отсутствие крупных афтершоков может быть связано и с высокими кажущимися, а значит, и сброшенными напряжениями в очагах описанных землетрясений − 640 бар для основного толчка ($K_P = 14.0$) и 790 бар для следующего события ($K_P = 12.9$) по данным ЧИСС на сейсмической станции "Ванновская". За период работы этой станции (с 1982 г.) такие напряжения — самые высокие для землетрясений региона. Вместе с тем землетрясения Кубадаг-Большебалханского блока и ранее отличались высокочастотным составом очагового излучения [7].

Повышение количества землетрясений и выделившейся сейсмической энергии на территории Балхано-Каспийского района в сентябре и октябре (рис. 2,а) связано с землетрясениями 9-10 энергетических классов, происшедшими в его основных очаговых зонах — Кумдагской, Большебалханской, Янгаджинской и Каспийской. Для землетрясения 9 сентября в $07^{\rm h}13^{\rm m}$ с ${\rm K_P}{=}10.1$, принадлежащего Кумдагской очаговой зоне, удалось определить механизм очага, который имеет два возможных решения: поддвиг по запад-северо-западной плоскости или сброс — по широтной.

Рис. 3. Распределение по месяцам числа N и максимального класса K_P землетрясений в окрестности основных сейсмических событий 1994 г.: 01.07 в 10^h12^m (Янгаджинское) с K_P =14.0, MS=5.2 при r=40 км и K_{min} =7.6 (a); 01.05. в 12^h00^m с K_P =15.0, MS=6.3 при r=50 км и K_{min} =8.6 (б); 21.10 в 08^h16^m (Кёнекесирское) с K_P =13.5, MS=4.9 при r=40 км и K_{min} =7.6 (в); 11.07 в 20^h57^m с K_P =12.6, MS=4.4 при r=30 км и K_{min} =7.6 (г).

1,2 - графики изменения числа N землетрясений и максимального класса К_Р соответственно.

В Эльбурском районе (№2) основным сейсмическим событием является землетрясение с K_P =12.6, происшедшее 11 июля в 20^h57^m на туркмено-иранской границе, к юго-западу от Кизылатрека. Это самое крупное за последние четыре года землетрясение на рассматриваемой территории. Оно предварялось повышением сейсмической активности A_{10} в 1993 г. по сравнению с двумя предшествующими годами [1, 2, 8]. Мартовский максимум выделившейся энергии (рис. 2,6) связан с продолжением процесса в очаге землетрясения 19.06.1993 г. $(t_0$ = 17^h01^m , K_P =12.1, MS=4.9) на территории Ирана, в окрестностях которого в марте произошло одно землетрясение с K_P =11, два – с K_P =10 и два – с K_P =9. Эта зона оставалась действующей в течение года, что подтверждается сентябрьским землетрясением с K_P =10.6. Землетрясение 11 июля предварялось двумя небольшими толчками с K_P =9 в январе и мае и сопровождалось 27 афтершоками в июле (рис. 3,6), старший из которых имел энергию $3*10^{11}$ Дж. Основной толчок имел большую глубину – 50 км по инструментальным данным, 20-22 км – по макросейсмическим. Он проявился вблизи очага сотрясениями примерно той же интенсивности (5-6 баллов), что и его более слабые, но менее глубокие афтершоки 11-го энергетического класса (12 июля с 10^h12^m , 10^h12^m

В итоге анализа сейсмичности западного Туркменистана отметим синхронность активизации сейсмичности Балхано-Каспийского и Эльбурского районов в марте и июле 1994 г. (рис. 2,а и 2,б). Эпицентры сильных и умеренных землетрясений, с которыми связаны максимумы выделившейся энергии, оконтуривают Южно-Каспийскую впадину (рис. 1) и, по-видимому, обусловлены единым тектоническим процессом, проявляющимся на её границах в виде сейсмических подвижек.

В **Туркмено-Хорасанском** районе (№3), который оставался сравнительно спокойным первые 9 месяцев (рис. 2,в), главным событием явилось Кёнекесирское землетрясение 21 октября в $11^{\rm h}46^{\rm m}$ с ${\rm K_P}=13.5$, MS=4.9, ${\rm I_0}=7$ -8 баллов (см. наст. сб.). Напомним, что повышенная сейсмическая активность Центрального Копетдага отмечается с 1992 г.[1, 2]. 10.09.1993 г. в $09^{\rm h}49^{\rm m}$ в районе Арчман-Нохурского тектонического узла, в 30 км северо-восточнее очага Кёнекесирского

землетрясения, произошло Караулское землетрясение с $K_P=11.6$, сопровождавшееся фор- и афтершоковой деятельностью. Очевидно, эта зона продолжала работать вплоть до Кёнекесирского землетрясения, проявляя активность на уровне землетрясений 10-го энергетического класса и ниже (рис. 3,в). Кёнекесирское землетрясение 21 октября сопровождалось большим числом афтершоков (только в октябре их было 56 с $K_P \ge 7.6$), количество которых не вышло на фоновый уровень к концу текущего года (рис. 3,в). Энергетический класс максимального афтершока в $22^h 09^m$ составил $K_P = 10.6$ и ощущался с $I_0 = 5$ баллов.

Основному толчку предшествовал ощутимый форшок с K_P =12.1, проявившийся в ближайших населённых пунктах с интенсивностью 5-6 баллов, а на расстояниях 40-65 км - 2-3 балла (см. наст. сб.). Механизм очага форшока представляет собой взброс по северо-западной или надвиг по восток-северо-восточной плоскости. В очаге основного толчка произошёл сброс по северо-западной или северо-восточной плоскости.

Помимо описанной, в Туркмено-Хорасанском районе продолжали действовать ещё две зоны: Боджнурдская, где 1 сентября в 01^h18^m произошло землетрясение с K_p =10.6, и очаговая зона землетрясения 09.05.1993 г. в 17^h42^m с K_p =12.6, MS=4.4 [1, 9], где 14.12.1994 г. в 20^h43^m произошло землетрясение с K_p =12.2, MS=4.5 (рис. 1, 2,в).

В целом по Туркмено-Хорасанскому району, даже при учёте многочисленных афтершоков Кёнекесирского землетрясения, сейсмическая активность понизилась от A_{10} =0.10-0.11 в 1992-1993 гг. [1, 2] до A_{10} =0.08 в 1994 г.

В **Восточном Туркменистане** (№4) по-прежнему остаются активными Газлийская и Гаурдак-Кугитангская очаговые зоны (рис. 1). В 1994 г. они активизировались в мае месяце: 1 мая в 12^h00^m произошло землетрясение в 70 км к юго-востоку от Кугитанга (на территории Афганистана) с $K_P=15.0$, MS=6.3 и 25 мая в 07^h42^m – в районе Газли (в Узбекистане) с $K_P=12.8$, MS=4.5.

Землетрясение 1 мая произошло на значительной глубине и имело интенсивность в эпицентре 6-7 баллов. Его проявления на поверхности захватили большую площадь. Число афтершоков этого землетрясения с $K_P \ge 8.6$ только в мае месяце составило 66 (рис. 2,г). Однако оно не включено в расчёт при составлении табл. 2 и 3, так как расположено за восточной границей региона.

Эпицентр и центр области афтершоков землетрясения 1 мая отстоят на расстоянии менее 100 км от эпицентров Гаурдакских землетрясений 1991 г. [10], что позволяет отнести его к Гаурдак-Кугитангской сейсмоактивной зоне. Анализ сейсмичности этой зоны с координатами $\varphi = 37.0\text{-}39.0^{\circ}$ N, $\lambda = 65.5\text{-}67.5^{\circ}$ E, приведенный в [10], показал, что данная зона в течение текущего столетия проявляла себя вспышками сейсмичности с $K_P=12\text{-}15$ длительностью 5-10 лет, за которыми следовал период затишья (20-25 лет). Гаурдакские землетрясения 1991 г., после 20-летнего затишья, положили начало новому, четвёртому за столетие, периоду активизации, и землетрясение 1 мая 1994 г. прекрасно вписывается в эту схему.

Сейсмичность **Центрально-Каракумского** района (№5) отмечена лишь тремя слабыми толчками с K_P =4, 5 и 6 в районе сейсмической станции "Серный".

В целом сейсмическая активность в Балхано-Каспийском и Туркмено-Харасанском районах понизилась (табл. 4), несмотря на происшедшие здесь крупные землетрясения с K_p =14.0 и K_p =13.5. В Эльбурском районе активность практически не изменилась, а в Восточном Туркменистане она возросла за счёт афтершоков землетрясения 1 мая с K_p =15.0, происшедших в границах региона.

 $N_{\underline{0}}$ Район $A_{1\underline{0}}$ 1993 г. 1994 г. Балхано-Каспийский 0.10 1 0.08 2 Эльбурский 0.10 0.11 3 Туркмено-Хорасанский 0.11 0.08

Таблица 4. Сравнение сейсмической активности A₁₀ за 1993 и 1994 годы

4	Восточный Туркменистан	0.03	0.05		
	КОПЕТДАГ	0.050	0.045		

Литература

- 1. **Гаипов Б.Н., Голинский Г.Л., Петрова Н.В., Рахимов А.Р., Сарыева Г.Ч. 1999.** Землетрясения Копетдага // Землетрясения Северной Евразии в 1993 году. М.: НИА-Природа. С. 40-48.
- 2. **Каррыев Б.С., Ахмедова С.В., Аннаоразова Т.А., Голинский Г.Л., Петрова Н.В., Рахимов А.Р. 1997.** Землетрясения Копетдага // Землетрясения Северной Евразии в 1992 году. М.: Геоинформмарк. С. 37-41.
- 3. **Голинский Г.Л., Аннаоразова Т.А., Рахимов А.Р. 1986.** Землетрясения Копетдага // Землетрясения в СССР в 1983 году. М.: Наука. С. 38-45.
- 4. **Аннаоразова Т.А, Изюмов С.Ф., Кузьмин Ю.О., Петрова Н.В. 1989.** Изучение очаговых зон сильных землетрясений Западной Туркмении // Изв. АН ТССР. Сер. ФТХ и ГН. №1. С. 12-17.
- 5. Горшков Г.П. 1987. Сейсмотектоника Копетдага. М.: Наука. 51 с.
- 6. Сейсмическое районирование территории СССР. Туркмения. 1980. М.: Наука. С. 147-162.
- 7. **Аннаоразова Т.А.**, **Петрова Н.В. 1989.** О связи спектрального состава с механизмом очагов землетрясений Копетдага // Изв. АН ТССР. Сер ФТХ и ГН. №3. С. 39-43.
- 8. **Аннаоразова Т.А., Голинский Г.Л., Каррыев Б.С., Рахимов А.Р. 1997.** Землетрясения Копетдага // Землетрясения в СССР в 1991 году. М.: ОИФЗ РАН. С. 28-33.
- 9. Доманова Л.Ю., Рахимов А.Р., Голинский Г.Л. (отв. сост.); Мамедзянова М., Тачов Б., Шкварун Н., Коржукова Т., Таджиева Ш. (сост.) 1999. Региональные и территориальные каталоги: Копетдаг // Землетрясения Северной Евразии в 1993 году. М.: Наука. С. 159-164.
- 10. **Аширов Т.А., Аннаоразова Т.А., Петрова Н.В. 1992.** О сейсмичности Гаурдак-Кугитанского района // Изв. АН ТССР. Сер. ФТХ и ГН. №2. С. 101-104.