Наблюдения временными сетями

Эпицентральные зоны Чуйского 2003 г. и Айгулакского 2019 г. землетрясений

^{1,2}А.А. Еманов, ¹П.О. Полянский, ¹А.Ф. Еманов, ^{1,2}А.В. Фатеев, ¹Е.В. Шевкунова, ¹В.Г. Подкорытова, ¹В.В. Арапов, ¹Е.А. Гладышев, ¹А.И. Артёмова, ¹А.А. Дураченко

¹АСФ ФИЦ ЕГС РАН, г. Новосибирск; ²ИНГГ СО РАН, г. Новосибирск

В 2023 г. продолжился мониторинг сейсмической активности в зоне Чуйского землетрясения 2003 г., а также в зоне Айгулакского землетрясения 2019 года. Станции Алтайского сейсмологического полигона, начиная с 2002 г., фиксируют с повышенной, относительно других районов Алтае-Саянской области, точностью ход сейсмического процесса [1, 2]. Для детальных наблюдений за сейсмичностью зоны Чуйского землетрясения, а также смежных блоковых структур в Горном Алтае в 2023 г., в дополнение к стационарным станциям, Алтае-Саянским филиалом ФИЦ ЕГС РАН была развернута локальная сеть временных станций, охватывающая эпицентральные зоны Чуйского и Айгулакского землетрясений.

Сеть временных станций состоит из десяти станций с приборами, регистрирующими колебания $\geq 1 \Gamma u$ (табл. III.3), и шести станций с широкополосными датчиками (табл. III.4).

Код станции	Координаты и высота над уровнем моря			Обор	Период работы в 2023 г.		
	φ, °N	λ, °E	<i>h</i> , м	сейсмометр	регистратор	начало	конец
CB15	50.482	87.494	1814	DT-SOLO	Байкал-8L	05.07	22.10
CB19	50.179	87.676	1873	DT-SOLO	Байкал-АС-75	02.07	26.10
CC03	49.995	88.062	2240	DT-SOLO	Байкал-АС-75	03.07	24.10
CE01	49.956	87.883	2090	DT-SOLO	Байкал-АС-75	04.07	24.10
CF02	50.525	87.441	2072	DT-SOLO	Байкал-8.2	05.07	22.10
CF20	50.641	87.622	1629	DT-SOLO	Байкал-8.2	07.07	11.10
CH02	50.084	89.271	2221	DT-SOLO	Байкал-АС-75	01.07	23.10
CH05	50.779	86.457	795	DT-SOLO	Байкал-АС-75	26.06	23.07
CH07	50.241	88.049	1790	DT-SOLO	Байкал-АС-75	03.07	03.07
TYTO	50.120	87.922	1762	HS-1	Байкал-8L	02.07	26.10

Таблица III.3. Сведения о сейсмических станциях временной локальной сети АСФ ФИЦ ЕГС РАН на Алтайском сейсмологическом полигоне в 2023 г.

Таблица III.4. Сведения о сейсмических станциях широкополосного сейсмического профиля АСФ ФИЦ ЕГС РАН в 2023 г.

Код станции	Координаты и высота над уровнем моря			Обор	Период работы в 2023 г.		
	φ, °N	λ, °E	h, м	сейсмометр	регистратор	начало	конец
CHP03	49.926	88.515	1812	CME-4111	Байкал-8.1	28.06	06.10
CHP04	50.407	88.385	1532	CMG-6T	Байкал-8L	29.06	27.10
CHP06	50.831	87.924	1568	CMG-6T	Байкал-8.2	06.07	01.10
CHP09	52.047	87.064	394	CME-6211	Байкал-8.2	11.07	25.09
CHP20	52.482	86.790	367	CME-6211	Байкал-8.2	11.07	11.07

На рис. III.18 показана карта сети временных и стационарных станций в Горном Алтае. Сеть временных станций размещена таким образом, что позволяет выстроить более плотную систему наблюдений непосредственно в Чуйско-Курайской зоне и в Ай-гулакском хребте.

Рис. III.18. Сеть временных станций на Алтайском сейсмологическом полигоне в 2023 г.

По данным сводной обработки, в электронный вариант сейсмологического каталога Чуйско-Курайской зоны Горного Алтая (Алтайский сейсмологический полигон) за период с 31.08. по 31.10.2023 г. внесены параметры 1231 землетрясения в энергетическом диапазоне (-0.6) $\leq M \leq 3.4$ ((-1.6) $\leq ML \leq 3.8$) [3]. Данные восьми землетрясений с $M \geq 2.4$ продублированы в основном каталоге Алтае-Саянского региона [4]. В печатный вариант каталога Алтайского сейсмологического полигона включены параметры 26 землетрясений с $2.0 \leq M \leq 3.1$ [5], события с $M \geq 3.2$ опубликованы в печатном варианте основного каталога Алтае-Саянского региона [6] (ред.).

С 2019 г. на территории Горного Алтая после Айгулакского землетрясения хорошо выделяются по сейсмической активности две афтершоковые области – Чуйско-Курайская и Айгулакская.

На рис. III.19 приведена карта распределения эпицентров землетрясений в период полевых наблюдений с 28 июня по 31 октября 2023 года.

Для подсчета количества сейсмических событий в эпицентральных областях Айгулакского и Чуйского землетрясений обозначены две зоны.

В табл. III.5 приведено распределение землетрясений за период полевых наблюдений по магнитудам *ML* для Айгулакской и Чуйско-Курайской эпицентральных областей, а также для всей области, охватывающей Северо-Чуйский, Южно-Чуйский, Айгулакский, Курайский хребты, Курайскую и Чуйскую впадины и Алашское плато.

В 2023 г. произошло перераспределение доли землетрясений, приходящихся на эпицентральные зоны в сравнении с 2022 г. [7]. В отчетный период преимущество по общему количеству событий было у Айгулакской эпицентральной зоны. Доля Ай-гулакской активизации составляет около 74%.

Рис. III.19. Карта землетрясений Чуйско-Курайской и Айгулакской зон за период работы временной сети станций (с 28.06.2023 г. по 31.10.2023 г.)

Таблица III.5. Количество землетрясений в Чу	уйско-Курайской и Айгулакской зонах
за период полевых наблюдений с 28.06. по 31.10.2	023 г. в зависимости от магнитуды ML

30110	ML										Beero		
Зона	-1.5	-1.0	-0.5	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	BCEIO
Айгулакская	6	445	503	287	115	48	25	7	6	1	0	0	1443
Чуйско-Курайская	0	0	32	111	138	122	69	20	9	1	2	0	504
Весь Алтай	6	454	578	470	340	245	148	47	22	6	3	1	2320

Наибольшее скопление землетрясений Чуйской афтершоковой зоны по-прежнему наблюдается вблизи эпицентра главного толчка 2003 г. на границе Чаган-Узунского блока с Северо-Чуйским хребтом. При этом почти все наиболее крупные события очаговой области Чуйского землетрясения с $ML \ge 2.0$ зарегистрированы в северо-западном ее крыле относительно эпицентра основного толчка 2003 года. За период работы временной сети наиболее крупное землетрясение произошло 22 сентября в 11^h27^m с ML=3.7 в северных отрогах Северо-Чуйского хребта. Еще одно крупное (вне периода полевых наблюдений), сопоставимое по магнитуде, землетрясение произошло в Чаган-Узунском блоке 3 июня в 23^h15^m с ML=3.7.

Юго-западнее, перпендикулярно Чуйской активизации, вдоль Северо-Чуйского хребта наблюдаются две небольшие активизации. Обособленная разреженная сейсмическая активизация также прослеживается на границе Южно-Чуйского хребта и Чуйской впадины (рис. III.19).

Афтершоковый процесс Айгулакской зоны в 2023 г. имеет свою особенность относительно предыдущих лет (рис. III.20). В этом году заметно выросло число мелких землетрясений в диапазоне $-1.5 \le ML \le 0.0$, большинство из которых выстроилось в две соседствующие активизации, расположенные четко с юга на север, одна из которых приурочена к главному толчку 2019 года. При этом большинство более крупных землетрясений расположено севернее и северо-западнее эпицентра главного толчка.

Рис. III.20. Карта землетрясений Айгулакской зоны за период работы временной сети станций (с 28.06. по 31.10.2023 г.)

Следует также отметить повышенную сейсмическую активность в соседнем горном массиве – Курайском хребте и на стыке Курайского хребта и Курайской впадины. Здесь наибольшее число эпицентров землетрясений смещено в сторону Айгулакского хребта. Магнитуда землетрясений здесь за весь период 2023 г. отмечена в диапазоне $M=(-0.3)\div 3.4$ (рис. III.20). Наиболее крупное землетрясение отмечено 18 сентября в 18^h56^m с ML=3.8 в Курайской котловине.

Как уже было установлено детальными наблюдениями, в эпицентральной зоне Чуйского землетрясения [2, 8, 9] происходила активизация объемной структуры разломов. Позднее возникли изменения сейсмического режима Алтая, связанные с сейсмической активизацией структур, смежных с эпицентральной зоной Чуйского землетрясения 2003 г. [10, 11]. К наиболее сильной активизации смежной структуры привело Айгулакское землетрясение 2019 г. [12].

На рис. III.21 приведен общий график повторяемости и графики для каждой зоны в отдельности.

Результаты

С использованием временной сети станций для Чуйско-Курайской зоны Горного Алтая получены высокоточные данные о развитии сейсмичности с повышением представительности данных на единицу по локальной магнитуде и с точностью определения координат событий по площади до 0.5 *км*.

Наиболее сильные землетрясения за период полевых наблюдений 2023 г. были зарегистрированы 18 сентября в $18^{h}56^{m}$ в Курайской котловине с *ML*=3.8 и 22 сентября в $11^{h}27^{m}$ в Северо-Чуйском хребте с *ML*=3.7.

Сейсмически активны одновременно эпицентральные зоны Чуйского землетрясения 2003 г. с *M*_S=7.3 и Айгулакского землетрясения 2019 г. с *ML*=5.5 с переменой преимущества по количеству событий относительно 2022 г. [7] в сторону Айгулакской зоны за счет мелких событий.

Рис. III.21. Графики повторяемости землетрясений за период работы детальных сетей станций для 2022 и 2023 гг.: а – общий, б – Чуйско-Курайская зона, в – Айгулакская зона

Отмечается сейсмическая активность на протяжении всего Курайского хребта с заметным увеличением количества землетрясений при приближении к Айгулакскому хребту.

Литература

1. Еманов А.А., Еманов А.Ф., Лескова Е.В., Фатеев А.В. Алтайский сейсмологический полигон // Землетрясения России в 2014 году. – Обнинск: ГС РАН, 2016. – С. 94–98. – EDN: WYKYRR

2. Еманов А.Ф., Еманов А.А., Фатеев А.В. Устойчивые структуры афтершоков Чуйского землетрясения 2003 года // Геология и геофизика. – 2022. – Т. 63, № 1. – С. 87–101. – DOI: 10.15372/GiG2020176. – EDN: FYBZVV

3. 2023-ER_App23_Altai-detaild.xlsx [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2023 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2025]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_23.html, свободный.

4. 2023-ER_App06_Altai-and-Sayan-Mountains.xlsx [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2023 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2025]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/zr/app_23.html, свободный.

5. Подкорытова В.Г. (отв. сост.); Артёмова А.И., Еманов А.А., Манушина О.А., Подлипская Л.А., Шаталова А.О., Шевкунова Е.В., Фролов М.В., Гладышев Е.А., Арапов В.В. Каталоги землетрясений по различным регионам России. Алтайский сейсмологический полигон // Землетрясения России в 2023 году. – Обнинск: ФИЦ ЕГС РАН, 2025. – С. 201.

6. Подкорытова В.Г. (отв. сост.); Артёмова А.И., Еманов А.А., Манушина О.А., Подлипская Л.А., Шаталова А.О., Шевкунова Е.В., Фролов М.В., Гладышев Е.А., Арапов В.В. Каталоги землетрясений по различным регионам России. Алтай и Саяны // Землетрясения России В 2023 году. – Обнинск: ФИЦ ЕГС РАН, 2025. – С. 165–168.

7. Еманов А.Ф., Еманов А.А., Шевкунова Е.В., Фатеев А.В., Гладышев Е.А., Ершов Р.А., Арапов В.В. Результаты детального сейсмического мониторинга. Эпицентральные зоны Чуйского 2003 г. и Айгулакского 2019 г. землетрясений // Землетрясения России в 2022 году. – Обнинск: ФИЦ ЕГС РАН, 2024. – С. 134–138. – EDN: LGJEBL

8. Еманов А.Ф., Еманов А.А., Лескова Е.В., Колесников Ю.И., Фатеев А.В. Афтершоковый процесс Чуйского землетрясения 27.09.2003 г. // Динамика физических полей Земли. – М.: Светоч Плюс, 2011. – С. 173–185. – EDN: TGYWFD

9. Еманов А.Ф., Еманов А.А., Фатеев А.В. Сейсмотектоника активизированной объемной структуры разломов: результаты исследования строения верхнекоровой очаговой области континентального Чуйского землетрясения *MS*=7.3, произошедшего 27 сентября 2003 г. в Горном Алтае (Россия) // Геотектоника. – 2021. – № 2. – С. 94–104. – DOI: 10.31857/S0016853X21010045. – EDN: RJCBDK

10. Еманов А.А., Еманов А.Ф., Лескова Е.В., Фатеев А.В. Об изменении сейсмического режима в Чуйско-Курайской зоне Горного Алтая в 1963–2016 гг. // Интерэкспо Гео-Сибирь. – 2017. – Т. 2, № 3. – С. 41–45. – EDN: YUEEDT

11. Еманов А.Ф., Еманов А.А., Фатеев А.В., Шевкунова Е.В., Гладышев Е.А. Эволюция сейсмичности Алтая после Чуйского землетрясения 2003 г. // Вулканология и сейсмология. – 2023. – № 6. – С. 26–40. – DOI: 10.31857/S0203030623700347. – EDN: XJIRKL

12. Еманов А.Ф., Еманов А.А., Новиков И.С., Гладышев Е.А., Фатеев А.В., Полянский П.О., Шевкунова Е.В., Ершов Р.А., Арапов В.В., Кривов А.А. Айгулакская очаговая область как результат воздействия Чуйского землетрясения 2003 г. на Горный Алтай // Геология и геофизика. – 2024. – Т. 65, № 11. – С. 1630–1646. – DOI: 10.15372/GiG2024135. – EDN: HACNVD