Эпицентральные зоны Чуйского 2003 г. и Айгулакского 2019 г. землетрясений

¹А.Ф. Еманов, ^{1,2}А.А. Еманов, ^{1,2}А.В. Фатеев, ¹Е.В. Шевкунова, ¹В.Г. Подкорытова, ¹А.А. Дураченко, ¹Е.А. Гладышев, ¹Р.А. Ершов, ¹П.О. Полянский

¹АСФ ФИЦ ЕГС РАН, г. Новосибирск; ²ИНГГ СО РАН, г. Новосибирск

На протяжении почти 20 лет продолжается сейсмическая активность в зоне Чуйского землетрясения 2003 года. Станции Алтайского сейсмологического полигона фиксируют с повышенной, относительно других районов Алтае-Саянской области, точностью ход сейсмического процесса, начиная с 2002 г. [1, 2]. Для детальных наблюдений за сейсмичностью зоны Чуйского землетрясения, а также смежных блоковых структур в Горном Алтае Алтае-Саянским филиалом ФИЦ ЕГС РАН в 2021 г., в дополнение к стационарным станциям, была развернута локальная сеть временных станций, охватывающая теперь и Айгулакский хребет. Сеть временных станций состояла из 11 станций с приборами, регистрирующими колебания $\geq 1 \Gamma \mu$ (табл. III.5), и девяти станций с широкополосными датчиками (табл. III.6).

Код станции	Координаты и высота над уровнем моря			Обор	Период работы в 2021 г.		
	φ, °N	λ, °E	<i>h</i> , м	сейсмометр	регистратор	начало	конец
CB15	50.482	87.494	1815	СК-1П	Байкал АС-75	02.07	14.09
CB19	50.179	87.676	1873	СК-1П	Байкал АС-75	29.06	11.08
CC03	49.995	88.062	2237	HS-1	Байкал 8.2	30.06	03.10
CC04	49.824	88.038	2217	СК-1П	Байкал АС-75	01.07	03.10
CE01	49.956	87.883	2090	СК-1П	Байкал АС-75	30.06	03.10
CF00	50.550	87.386	1885	HS-1	Байкал 8.2	02.07	11.09
CF20	50.641	87.622	1629	HS-1	Байкал 8.1	03.07	12.09
CH02	50.084	89.271	2217	СК-1П	Байкал АС-75	28.06	02.10
CH03	50.450	86.784	915	СК-1П	Байкал 8.1	25.06	16.09
CH05	50.779	86.457	797	СК-1П	Байкал 8.1	25.06	02.09
TYTO	50.120	87.922	1762	СК-1П	Байкал АС-75	29.06	06.10

Таблица III.5. Сведения о сейсмических станциях временной локальной сети АСФ ФИЦ ЕГС РАН на Алтайском сейсмологическом полигоне в 2021 г.

Таблица III.6. Сведения о сейсмических станциях широкополосного сейсмического профиля АСФ ФИЦ ЕГС РАН в 2021 г.

Код станции	Координаты и высота над уровнем моря			Обор	Период работы в 2021 г.		
	φ, °N	λ, °E	h, м	сейсмометр регистратор		начало	конец
CH07	50.241	88.049	1790	Guralp CMG-6T	Guralp CMG-CD24	10.07	02.10
CHP02	49.740	88.648	2092	Guralp CMG-6T	Guralp CMG-CD24	28.06	20.09
CHP03	49.926	88.515	1817	Guralp CMG-6T	Guralp CMG-CD24	28.06	06.08
CHP04	50.407	88.385	1530	CME-6211	Байкал 8.2	03.07	27.07
CHP06	50.831	87.924	1558	Guralp CMG-6T	Байкал 8.2	05.07	08.08
CHP07	51.140	87.719	506	Nanometrics	Nanometrics Centaur	06.07	05.10
				Trillium Compact			
CHP08	51.564	87.399	1438	Guralp CMG-6T	Guralp CMG-CD24	07.07	05.09
CHP09	52.046	87.064	393	CME-6211	Байкал 8.2	07.07	03.09
CHP20	52.482	86.790	367	Guralp CMG-6T	Байкал 8.1	08.07	17.08

На рис. III.25 показана карта сети временных и стационарных станций в Горном Алтае. Сеть временных станций размещена таким образом, что позволяет выстроить более плотную систему наблюдений непосредственно в Чуйско-Курайской зоне и на Айгулакском хребте.

Рис. Ш.25. Сеть временных станций на Алтайском сейсмологическом полигоне в 2021 г.

По данным сводной обработки, в электронный вариант сейсмологического каталога Чуйско-Курайской зоны Горного Алтая за период работы временных станций (26.06.–10.10.2021 г.) внесены параметры 2342 землетрясений в энергетическом диапазоне (-0.4) $\leq M \leq 3.5$ ((-1.3) $\leq ML \leq 4.0$) [3]. В печатный вариант каталога включены параметры 34 событий с $2.3 \leq M \leq 2.9$ [4], землетрясения с $M \geq 3.0$ опубликованы в печатном варианте основного каталога Алтае-Саянского региона [5] (ред.).

С 2019 г. после Айгулакского землетрясения на территории Горного Алтая хорошо выделяются по сейсмической активности две афтершоковые области: Чуйско-Курайская и Айгулакская. В западной оконечности Айгулакского хребта сейсмичность нарастала с 2018 г. и заметно усилилась в 2019 году.

На рис. III.26 приведена карта распределения эпицентров землетрясений в период полевых наблюдений с 26 июня по 10 октября 2021 г., а в табл. III.7 – распределение землетрясений за этот же период по магнитудам *ML*.

Наибольшее скопление землетрясений Чуйской афтершоковой зоны по-прежнему наблюдается вблизи эпицентра главного толчка 2003 г. на границе Чаган-Узунского блока с Северо-Чуйским хребтом. Более разреженный процесс фиксируется на стыке Южно-Чуйского хребта с Чуйской впадиной и в Курайской впадине. Наиболее сильное землетрясение за период полевых наблюдений 2021 г. было зарегистрировано в Чаган-Узунском блоке 23 июля в $23^{h}49^{m}$ с M=3.5 (ML=4.0).

В Айгулакской эпицентральной зоне с июня по октябрь произошло 1296 землетрясений, тогда как в Чуйской – 1048.

Афтершоковый процесс Айгулакской зоны можно назвать несформировавшимся, график повторяемости в области низких энергий имеет зигзагообразную форму, поэтому представительность несколько снижена по сравнению с представительностью для Чуйской афтершоковой зоны.

Рис. III.26. Карта землетрясений Чуйско-Курайской зоны за период работы временной сети станций (с 26.06.2021 г. по 10.10.2021 г.)

Таблица III.7. Распределение по магнитудам ML землетрясений Чуйско-Курайской зоны за период 26.06.–10.10.2021 г.

ML	-1.0	-0.5	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	Всего
Количество землетрясений	277	528	599	453	253	146	51	26	8	2	1	2344

На рис. III.27 приведен общий график повторяемости и графики для каждой зоны в отдельности.

Рис. III.27. Графики повторяемости землетрясений, зафиксированных с 26 июня по 10 октября 2021 г.: а – общий; б – Чуйско-Курайская зона; в – Айгулакская зона

Как уже было установлено детальными наблюдениями в эпицентральной зоне Чуйского землетрясения 2003 г. [6–8], на протяжении первого десятилетия наблюдалась устойчивая сейсмическая активизация объемной структуры разломов. Позднее возникли изменения сейсмического режима Алтая, связанные с сейсмической активизацией смежных с эпицентральной зоной Чуйского землетрясения структур [9]. К наиболее сильной активизации смежной структуры привело Айгулакское землетрясение 2019 г. [10].

На рис. III.28 представлен вертикальный срез сейсмического процесса в Чуйско-Курайской зоне, включая Айгулакскую, в 2021 г. (0 км по оси расстояний соответствует положению эпицентра Чуйского землетрясения 2003 г.).

Рис. Ш.28. Глубины землетрясений в Чуйско-Курайской зоне в 2021 г.

Слева на рис. III.28 сосредоточена зона афтершокового процесса в Айгулакском хребте. Характерный наклон оси концентрации землетрясений по мере изменения глубины сохраняется, как и в предыдущие годы. Правее по оси расстояний протянулась афтершоковая зона Чуйского землетрясения. Землетрясения рассредоточены по всей линии вдоль активизации, достигая наибольшей концентрации в эпицентральной области Чуйского землетрясения. Большое количество событий по всей зоне наблюдений фиксируется на глубине до 5 км.

Результаты

С использованием временной сети станций для Чуйско-Курайской зоны Горного Алтая получены высокоточные данные о развитии сейсмичности с повышением представительности данных на единицу по локальной магнитуде и с точностью определения координат событий по площади до 0.5 км и по глубине 1 км.

Наиболее сильное землетрясение за период полевых наблюдений 2021 г. было зарегистрировано в Чаган-Узунском блоке с *M*=3.5 (*ML*=4.0) вблизи эпицентра Чуйского землетрясения 2003 года.

Сейсмически активны одновременно эпицентральные зоны Чуйского землетрясения 2003 г. с *M*=7.2 и Айгулакского землетрясения 2019 г. с *M*=4.7 (*ML*=5.5) с небольшим преимуществом по количеству событий в Айгулакской зоне.

Сейсмоактивный слой в Чуйско-Курайской зоне в данный момент – от первых километров до, примерно, 20 км. Наибольшее число землетрясений – с глубинами около 5 км.

Литература

1. Еманов А.Ф., Колесников Ю.И., Еманов А.А., Филина А.Г., Подкорытова В.Г., Фатеев А.В., Ярыгина М.А. Изучение землетрясений малых энергий на локальной сети Алтайского сейсмологического полигона // Напряженно-деформированное состояние и сейсмичность литосферы. Труды Всероссийского совещания / Отв. ред. С.И. Шерман. – Новосибирск: Изд-во СО РАН, 2003. – С. 324–326. – EDN: THVXFJ 2. Еманов А.А., Еманов А.Ф., Лескова Е.В., Фатеев А.В. Алтайский сейсмологический полигон // Землетрясения России в 2014 году. – Обнинск: ГС РАН, 2016. – С. 94–98. – EDN: WYKYRR

3. 2021-ER_App23_Altai-polygon.xls [Электронный ресурс]: Список приложений для ежегодника «Землетрясения России в 2021 году» // Землетрясения России [сайт]. – [Обнинск: ФИЦ ЕГС РАН, 2023]. Систем. требования: MS Excel, Open Office. – URL: http://www.gsras.ru/ zr/app_21.html, свободный.

4. Подкорытова В.Г. (отв. сост.); Артёмова А.И., Еманов А.А., Манушина О.А., Подлипская Л.А., Шаталова А.О., Шевелёва С.С., Шевкунова Е.В., Фролов М.В., Гладышев Е.А. Каталоги землетрясений по различным регионам России. Алтайский сейсмологический полигон // Землетрясения России в 2021 году. – Обнинск: ФИЦ ЕГС РАН, 2023. – С. 191.

5. Подкорытова В.Г. (отв. сост.); Артёмова А.И., Еманов А.А., Манушина О.А., Подлипская Л.А., Шаталова А.О., Шевелёва С.С., Шевкунова Е.В., Фролов М.В., Гладышев Е.А. Каталоги землетрясений по различным регионам России. Алтай и Саяны // Землетрясения России в 2021 году. – Обнинск: ФИЦ ЕГС РАН, 2023. – С. 152–156.

6. Еманов А.Ф., Еманов А.А., Лескова Е.В., Колесников Ю.И., Фатеев А.В. Афтершоковый процесс Чуйского землетрясения 27.09.2003 г. // Динамика физических полей Земли. – М.: Светоч Плюс, 2011. – С. 173–185. – EDN: TGYWFD

7. Еманов А.Ф., Еманов А.А., Фатеев А.В. Сейсмотектоника активизированной объемной структуры разломов: результаты исследования строения верхнекоровой очаговой области континентального Чуйского землетрясения *MS*=7.3, произошедшего 27 сентября 2003 г. в Горном Алтае (Россия) // Геотектоника. – 2021. – № 2. – С. 94–104. DOI: 10.31857/S0016853X21010045. – EDN: RJCBDK

8. Еманов А.Ф., Еманов А.А., Фатеев А.В. Устойчивые структуры афтершоков Чуйского землетрясения 2003 года // Геология и геофизика. – 2022. – Т. 63, № 1. – С. 87–101. DOI: 10.15372/GiG2020176. – EDN: FYBZVV

9. Еманов А.А., Еманов А.Ф., Лескова Е.В., Фатеев А.В. Об изменении сейсмического режима в Чуйско-Курайской зоне Горного Алтая в 1963–2016 гг. // Интерэкспо Гео-Сибирь. – 2017. – Т. 2, № 3. – С. 41–45. – EDN: YUEEDT

10. Еманов А.Ф., Еманов А.А., Фатеев А.В., Соловьёв В.М., Шевкунова Е.В., Гладышев Е.А., Антонов И.А., Корабельщиков Д.Г., Подкорытова В.Г., Янкайтис В.В., Елагин С.А., Серёжни-ков Н.А., Дураченко А.В., Артёмова А.И. Сейсмологические исследования в Алтае-Саянской горной области // Российский сейсмологический журнал. – 2021. – Т. 3, № 2. – С. 20–51. DOI: 10.35540/2686-7907.2021.2.02. – EDN: XRLSMR