Якутия

¹С.В. Шибаев, ^{1,2}Б.М. Козьмин, ¹А.Ф. Петров, ¹К.В. Тимириин, ¹Д.М. Пересыпкин, ¹А.В. Наумова, ¹Н.Н. Старкова ¹ЯФ ФИЦ ЕГС РАН, г. Якутск; ²ИГАБМ СО РАН, г. Якутск

Якутский филиал (ЯФ) ФИЦ ЕГС РАН проводил исследования сейсмичности территории Республики Саха (Якутия) на основе системы инструментальных наблюдений, включающей 23 цифровые сейсмические станции. В составе сети относительно 2016 г. [1] произошли изменения. Две станции (IENR и KBR) были закрыты в июне и августе соответственно из-за сокращения финансирования. В связи с ремонтом аппаратуры в течение года не работала станция DEPR. Расположение пунктов наблюдений представлено на рис. I.24, информация о станциях приведена в табл. I.18.

В 2017 г. были продолжены полевые наблюдения по изучению сейсмической активности в арктических районах Якутии, которые выполнялись в рамках совместного проекта «Seismicity and neotectonics of Laptev Sea region (SIOLA)» («Сейсмичность и неотектоника региона моря Лаптевых») ЯФ ФИЦ ЕГС РАН, Института океанологии РАН им. П.П. Ширшова (г. Москва) и Гельмгольтцского центра полярных и морских исследований Полярного института им. А. Вегенера (Германия) на 2016–2018 гг. Во время полевого периода 2017 г. цифровая информация, полученная на 25 временных автономных цифровых станциях за период с августа 2016 г. по сентябрь 2017 г., была снята для обработки данных, установлены новые накопители.

Рис. I.24. Сейсмические станции на территории Якутии в 2017 г. Черный шрифт – международные коды сети (центра) и станций, зеленый шрифт – региональные коды станций

Таблица 1.18. Сведен	ия о сейсмических с	танциях ЯФ ФИЦ	ЕГС РАН (cemь YAGSR)
----------------------	---------------------	----------------	----------------------

	Сейсмическая станция			Дата открытия	Координаты и высота				
N⁰	название станции, кол сети	код между- народ-	регио- наль-	закрытия– закрытия (модерни- зации ¹) [перерыв	φ, °N	λ, °E	h, м	Подпочва	Тип оборудования
	код сети	ный	ный	в работе]					
1	Алдан	ALDR	ALD	01.10.1999	58.610	125.410	662	Крупная галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-111
2	Артык	ATKR	АТК	04.07.1988	64.181	145.133	700	Суглинок, галеч- ник, вечная мерзлота	CM-3KB+ PAR-24B
3	Батагай	BTGS	BTG	12.03.1975	67.656	134.625	127	Глина, гравий, вечная мерзлота	CM-3OC+ SDAS
4	Белая Гора	YBGR	BGR	12.08.2011	68.532	146.193	36	Глина, вечная мерзлота	KS-2000+ PAR-4CH
5	Булуус	_	BLS	27.03.2012	61.360	129.030	90	Галька	СМЕ-4011+ Байкал-8
6	Витим	VTMR	VTM	16.06.2003	59.440	112.550	188	Суглинок	CME-4011+ PAR-4CH
7	Депутатский	DEPR	DEP	27.08.2003 [25.11.2016– 31.12.2017]	69.390	139.900	320	Вечная мерзлота	KS-2000+ PAR-4CH
8	Иенгра	IENR	IEN	10.07.2004– 01.06.2017	56.224	124.857	860	Гранитогнейсы	СМ-3КВ+ Байкал-11
9	Куберганя	_	KBR	18.04.2014– 01.08.2017	67.775	144.478	50	Вечная мерзлота	CME-6011+ PAR-4CH
10	Мома	MOMR	MOM	05.03.1983	66.467	143.217	192	Глина, гравий, вечная мерзлота	KS-2000+ PAR-4CH
11	Олёкминск	OLMR	OLM	11.06.2010	60.376	120.463	45	Песок, вечная мерзлота	СМ-3КВ+ Байкал-11
12	Столб	_	SOT	16.08.2013	72.403	126.812	50	Алевролиты, вечная мерзлота	СМЕ-6011+ Байкал-8
13	Табага	TBGR	TBG	24.06.2003	61.821	129.637	98	Вечная мерзлота	СМ-3КВ+ Байкал-11
14	Тикси YAGSR, GSN, IMS CTBTO	TIXI	TIX	15.08.1995 (24.09.2017)	71.649	128.867	50	Доломиты, квар- циты, вечная мерзлота	STS-1, GS-13+ Q330; STS-1, STS-2+ Q330-HR
15	Тында	TNDR	TND	20.06.2001	55.147	124.721	530	Галька, глина	CM-3OC+ SDAS
16	Усть-Мая 2	-	USM	08.04.2006	60.367	134.458	170	Глина, вечная мерзлота	СМ-3КВ+ Байкал-11
17	Усть-Нера	UNR	UNR	21.11.1961	64.566	143.228	485	Суглинки, веч- ная мерзлота	CKM-3+ PAR-24B
18	Хани	KHNR	KHN	11.12.2005	56.921	119.979	690	Гранитогнейсы	СМ-3КВ+ Байкал-11
19	Чагда	CGD	CGD	01.08.1968	58.752	130.609	195	Галька, глина, вечная мерзлота	СМ-3КВ+ Байкал-11
20	Чернышевский	YCRN	CRN	14.07.2011	63.021	112.486	319	Галька, гравий	KS-2000+ Байкал-111
21	Чульман	CLNS	CHL	01.07.1963	56.837	124.893	745	Песчаник	CM-3OC+ SDAS

¹ Показана дата последней модернизации, предыдущие см. в [1].

N⁰	Сейсмическая станция			Дата открытия–	Координаты и высота над уровнем моря				
	название станции, код сети	код между- народ- ный	регио- наль- ный	закрытия (модерни- зации ¹) [перерыв в работе]	φ, °N	λ, °E	ћ, м	Подпочва	Тип оборудования
22	Юктали	YKLR	YKL	04.07.2004	56.592	121.654	417	Суглинок	CM-3KB+ PAR-4CH
23	Якутск YAGSR, GSN, IMS CTBTO	YAK	YAK	05.10.1957 (24.09.2017)	62.031	129.680	91	Песчаник, вечная мерзлота	STS-1, GS-13; STS-1, STS-2+ Q330-HR

Количество полевых станций относительно 2016 г. [1] сохранено, но изменено их расположение. Были закрыты пункты наблюдений в Оленёкской протоке и низовьях реки Лены и увеличено их число к югу от Тикси вдоль западного побережья губы Буор-Хая. Впервые удалось открыть полевую станцию на острове Муостах, в 50 км к востоку от пос. Тикси в акватории названной губы. Тип цифровой аппаратуры, установленной на временных станциях, в сравнении с 2016 г. остался без изменений [1].

Для определения параметров эпицентров землетрясений на границе с соседними регионами использовались данные обработки сетей станций Байкальского, Сахалинского и Магаданского филиалов ФИЦ ЕГС РАН. Представительность регистрации землетрясений для большей части территории сохранилась на уровне 2016 г. [1]. Исключение составила северо-западная часть системы хр. Черского, где произошло снижение представительности с $K_{\rm P}$ =8 до $K_{\rm P}$ =9 ввиду прекращения работы двух станций. Напротив, в дельте р. Лены сетью полевых сейсмостанций без пропусков начали регистрироваться толчки с $K_{\rm P}$ =7 (в 2016 г. здесь полностью фиксировались события, начиная лишь с $K_{\rm P}$ =9).

В каталоге сейсмических событий Якутии приведены параметры 357 землетрясений с M=1.8–4.4 (K_P =7.2–11.3) (в том числе семи – по данным центра NEGSR) и 390 взрывов с M=1.8–3.2 (K_P =7.2–9.8) [2, 3]. Все подземные толчки происходили в пределах земной коры на глубине до 33 км, макросейсмические сведения отсутствуют. В печатном варианте каталога землетрясений [4] опубликованы параметры 142 событий региона с $M \ge 2.3$. Печатный вариант каталога взрывов [5] содержит данные 89 промышленных взрывов с $M \ge 2.3$.

На основе каталога землетрясений [2] составлена карта эпицентров, которая приведена на рис. I.25.

Основные проявления землетрясений в 2017 г., как и раньше, были сосредоточены в пределах двух крупных сейсмических поясов: Арктико-Азиатском на северо-востоке и Байкало-Становом – на юге региона. Первый маркирует границу Евразийской и Североамериканской литосферных плит, а второй – Евразийской и Амурской плит [6]. В течение года отмечен низкий уровень сейсмичности, близкий к уровню 2016 г. [1]. За год в регионе произошло 24 события с *M*=3.1–4.4 (*К*_P=9.5–11.3).

Более активна была территория Южной Якутии в зоне взаимодействия Евразийской и Амурской плит, которая представлена полосой эпицентров землетрясений Олёкмо-Становой сейсмотектонической зоны (ОСЗ). В ней было зафиксировано 225 подземных толчков с $M \ge 1.8$ ($K_P \ge 7.2$), что составляет около 63% от их числа за год (357 землетрясений). На карте эта полоса прослеживается от долины р. Олёкмы до Охотского моря, охватывая горные сооружения Олёкмо-Чарского и Алданского нагорий, а также Станового хребта. Сейсмичность тяготеет в основном к зоне влияния крупного регионального Станового шва, разделяющего названные плиты [6].

Наиболее мобилен западный фланг ОСЗ, где произошло около 70 близких землетрясений и выделяется три сейсмоактивных участка: Чаруодинский, Нюкжинский и Тас-Юряхский.

Рис. 1.25. Карта эпицентров землетрясений на территории Якутии в 2017 г. Звездочкой показано самое сильное землетрясение в регионе

На первом участке (область Чаруодинского роя 2005 г.) выявлено 35 событий с M=1.8-3.5 ($K_P=7.2-10.3$) [7], из них самый крупный толчок возник 2 мая в $13^{h}51^{m}$ с M=3.5 ($K_P=10.3$) на глубине 7 км. На втором участке (область Нюкжинского роя 2011 г.) отмечено 21 событие, из которых семь толчков имели M=3.3-3.7 ($K_P=9.9-10.7$) [8]. Глубина залегания очага мелкофокусного землетрясения 12 апреля в $13^{h}06^{m}$ с M=3.7 ($K_P=10.7$) составила 8 км. На третьем участке (среднее течение р. Олёкмы) локализовано девять толчков с M=1.8-3.5 ($K_P=7.2-10.3$), среди них умеренное событие 8 августа в $21^{h}03^{m}$ с M=3.6 ($K_P=10.5$) было более глубоким (h=15 км).

Значительное число землетрясений (N=73) произошло в пределах Станового хребта, наибольший энергетический класс $K_P=9.3-10.7$ (M=2.9-3.7) определен для пяти землетрясений. Землетрясение с M=3.7 ($K_P=10.7$) зарегистрировано 16 декабря в 22^h33^m на северном склоне названного хребта на глубине $24 \kappa M$.

Меньшее число толчков отмечено на территории Алданского нагорья (N=64). Их основную часть составляли слабые землетрясения с $M \le 2.8$ ($K_P \le 9.0$), и только четыре события имели M=3.1–3.8 (K_P =9.5–10.9). Эти скопления эпицентров наблюдались на правобережье реки Тимптон в системе Алдано-Учурского хребта, а также в среднем течении реки Гонам, где были приурочены к эпицентральной области Гонамского землетрясения 2014 г. (девять афтершоков) [9]. Самый крупный повторный толчок 22 августа в $02^{h}13^{m}$ с M=3.6 (K_P =10.5) был выявлен на глубине 15 км.

Существенно снизилась активность в бассейне р. Учур на крайнем востоке ОСЗ (18 землетрясений), что также связано здесь с редкой сетью наблюдений и пропусков при определении параметров землетрясений с $K_P < 9.0$ (M < 2.8). Ближайшая к данному району

сейсмическая станция «Чагда» расположена примерно в 200 км к северу. Местные землетрясения чаще приурочены к хребтам Кет-Кап и Лурикан. К ним и тяготеет событие 19 апреля в $00^{h}57^{m}$ с M=3.4 ($K_{P}=10.1$), которое произошло на глубине 10 км.

На севере и северо-востоке Якутии в зоне контакта Североамериканской и Евразийской плит сейсмически активным районом оставалась система хр. Черского. Это – наиболее тектонически подвижная структура, разбитая сетью северо-западных сейсмогенных разломов Индигиро-Колымской складчатой области [6]. Сюда тяготеет основная масса сейсмических событий (N=50), что соответствует 14% от их годового количества. Больше половины из них (N=26) относится к афтершокам Абыйского (Илин-Тасского) землетрясения 2013 г. и приурочены к крупному региональному Илин-Тасскому взбрососдвигу [10, 11]. Самыми заметными были события 15 сентября в 23^h13^m с M (MS)=4.4 (h=6 κm) и 30 октября в 04^h09^m с M=3.7 (K_P =10.6) (h=13 κm). Слабая активность наблюдалась на юго-восточном фланге хребта Черского. Энергетический класс местных событий (N=15) не превышал K_P ≤8.0 (M≤2.2).

Еще один активный участок в арктической части территории Якутии занимает низовья и дельту р. Лены. Здесь в результате мониторинга сейсмичности сетью полевых станций, действующих по программе «SIOLA», выявлена достаточно крупная зона сгущения эпицентров землетрясений, представленная 28 событиями с M=1.8-3.2 ($K_P=7.2-9.7$). Они образуют северо-западную полосу эпицентров, пересекающую дельту реки Лены вдоль ее Быковской и Оленёкской проток, которая тяготеет к Дюлюнгскому сбросо-сдвигу, а также субдолготную группу эпицентров, занимающую акваторию губы Буор-Хая моря Лаптевых с выходом ее эпицентров на континент в пределы Хараулахского хребта (Северное Верхоянье) и приуроченную к Приморскому сбросу и системе сбросов дна Буор-Хая ($h=21 \ \kappa M$) 30 ноября в $21^h 24^m$ с M=3.2 ($K_P=9.7$).

Предварительный анализ распределения указанных толчков по глубине показывает, что гипоцентры заполнили всю толщу земной коры данного района (25–30 км) [12]. Так, в верхней части земной коры ($h=2-10 \ \kappa m$) возникло 18 землетрясений, в средней части ($h=11-20 \ \kappa m$) – шесть и в нижней ($16-29 \ \kappa m$) – пять событий, т.е. чаще всего подвижки по разломам реализовывались в виде подземных толчков в верхней части земной коры (64% всех определений). Таким образом, в данном районе в 2017 г. имел место низкий уровень сейсмичности с преобладанием слабых мелкофокусных землетрясений.

К заметным участкам территории, где наблюдались небольшие группы сейсмических событий (*N*=17), относятся северные окончания Верхоянского хребта и Яно-Оймяконского нагорья. Энергетический класс двух толчков 1 февраля в $09^{h}36^{m}$ с $h=28 \ \kappa m$ и 16 февраля в $14^{h}48^{m}$ с $h=13 \ \kappa m$ составлял $K_{P}=9.7 \ (M=3.2)$.

Слабо активным был участок Приморской низменности между устьями рек Яны и Индигирки, а также хребет Сетте-Дабан, где зарегистрированы лишь одиночные землетрясения с $M \le 2.2$ ($K_P \le 8.0$). Практически асейсмична была восточная часть Сибирской платформы на левобережье р. Лены.

На рис. I.26 показана гистограмма суммарной сейсмической энергии, выделившейся на территории Якутии в 2013–2017 гг. (по данным [1, 2]). Уровень сейсмичности региона в 2017 г. согласно шкале «СОУС'09» [13] оценен как «фоновый пониженный» за 50-летний период наблюдений (с 1968 по 2017 г.) [14]. Сравнение величины сейсмической энергии, выделившейся на территории Якутии в 2013–2016 гг. [1], с таковой в 2017 г. позволяет констатировать сохранение общей тенденции на снижение уровня сейсмичности в регионе.

Рис. I.26. Распределение сейсмической энергии, выделившейся на территории Якутии в 2013–2017 гг.

Литература

1. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимиршин К.В., Пересыпкин Д.М., Наумова А.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2016 году. – Обнинск: ФИЦ ЕГС РАН, 2018. – С. 54–59.

2. *Part_IV-2017.* 09_*Yakutia_2017.xls* // Землетрясения России в 2017 году. – Обнинск: ФИЦ ЕГС РАН, 2019. – Приложение на CD-ROM.

3. *Part_V-2017. Catalogs_explosions_2017.xls* // Землетрясения России в 2017 году. – Обнинск: ФИЦ ЕГС РАН, 2019. – Приложение на CD-ROM.

4. Шибаев С.В., Козьмин Б.М., Старкова Н.Н. (отв. сост.); Хастаева Е.В., Москаленко Т.П., Денега Е.Г. Каталоги землетрясений по различным регионам России. Якутия // Землетрясения России в 2017 году. – Обнинск: ФИЦ ЕГС РАН, 2019. – С. 167–169.

5. Сведения о наиболее крупных промышленных взрывах // Землетрясения России в 2017 году. – Обнинск: ФИЦ ЕГС РАН, 2019. – С. 193–203.

6. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. – М.: ГЕОС, 2000. – 226 с.

7. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Пересыпкин Д.М., Петрова В.Е., Имаева Л.П., Имаев В.С., Лысова Г.В. Результаты сейсмических наблюдений в различных регионах России. Якутия // Землетрясения России в 2005 году. – Обнинск: ГС РАН, 2007. – С. 32–34.

8. Козьмин Б.М., Михайлова Р.С. Нюкжинский рой и его максимальный толчок 16 марта 2011 г. с *К*_Р=13.5, *Мw*=5.1, *I*₀=7 (Южная Якутия) // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН. – С. 345–350.

9. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Тимириин К.В., Пересыпкин Д.М., Лысова Г.В., Старкова Н.Н. Результаты сейсмического мониторинга различных регионов России. Якутия // Землетрясения России в 2014 году. – Обнинск: ГС РАН, 2016. – С. 51–55.

10. Imaeva L.P., Imaev V.S., Koz'min B.M. Structural-dynamic model of the Chersky seismotectonic zone (continental part of the Arctic-Asian seismic belt) // J. of Asian Earth Sciences. – 2016. – Vol. 116. – P. 59–68.

11. Шибаев С.В., Маккей К.Д., Козьмин Б.М., Петров А.Ф., Пересыпкин Д.М., Петрунин С.В., Старкова Н.Н., Тимириин К.В. Зимние полевые исследования зоны афтершоков Абыйского землетрясения 2013 г. на северо-востоке Якутии // Современные методы обработки и интерпретации сейсмологических данных. Материалы Девятой Международной сейсмологической школы / Отв. ред. А.А. Маловичко. – Обнинск: ГС РАН, 2014. – С. 354–357.

12. Mackey K.G., Fujita K., Ruff L.J. Crustal thickness of northeast Russia // Tectonophysics. – 1998. – Vol. 284. – P. 283–297.

13. *Салтыков В.А*. Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. – 2011. – № 2. – С. 53–59.

14. Салтыков В.А., Кравченко Н.М., Пойгина С.Г., Воропаев П.В. Качественный анализ сейсмичности. Оценка уровня сейсмичности регионов России // Землетрясения России в 2017 году. – Обнинск: ФИЦ ЕГС РАН, 2019. – С. 79–84.