Сокращенные обозначения и аббревиатуры

Принятые сокращения

ФИЦ ЕГС РАН — Федеральное государственное бюджетное учреждение науки

Федеральный исследовательский центр «Единая геофизиче-

ская служба Российской академии наук»

АЭС – атомная электростанция

БД – база данных

БРЗ – Байкальская рифтовая зона

ВЕП – Восточно-Европейская платформа

ГТУ — горно-тектонический удар

Управление — Управление обеспечения мероприятий в области граждан-

ОМ ГО, ЧС и ПБ ской обороны, защиты от чрезвычайных ситуаций и пожар-

ной безопасности

ГУ – горный удар

ГеоЭС − геотермальная электростанция

ГЭС - гидроэлектростанция

ДВЗЯИ – Договор о всеобъемлющем запрещении

ядерных испытаний

ДВО РАН — Дальневосточное отделение Российской академии наук
 ИГАБМ СО РАН — Институт геологии алмаза и благородных металлов СО РАН

ИОЦ
 информационно-обрабатывающий центр

КМВ — Кавказские Минеральные Воды

КНЦД – Казахстанский национальный центр данныхЛСМ – лаборатория сейсмического мониторинга

МЧС
 – Министерство Российской Федерации по делам граждан-

ской обороны, чрезвычайным ситуациям и ликвидации

последствий стихийных бедствий

ОАО — Открытое акционерное общество

 Программа ФНИ РАН
 – программа федеральных научных исследований РАН

 РИОЦ
 – региональный информационно-обрабатывающий центр

рис. – рисунок

РЭС – Российский экспертный совет

СОУС — статистическая оценка уровня сейсмичности

(шкала и методика «СОУС'09»)

СП СПЦ — сейсмическая подсистема Системы предупреждения

о цунами

СУБД – система управления базами данныхСУБР – Североуральский бокситовый рудник

табл. — таблица

УрО РАН — Уральское отделение Российской академии наук

ФЩП
 Федеральная целевая программа

ЦСМ – Центр сейсмологического мониторинга

ЦУКС ГУ МЧС России по Сахалинской области
 − Федеральное казенное учреждение «Центр управления мЧС России

по Сахалинской области»

ЧАО – Чукотский автономный округ

Array – сейсмическая группа

CD-ROM электронный оптический компакт-диск (CD) только для чтения (ROM – read only memory) **DIMAS** - программа обработки сейсмических данных масса взрывчатого вещества (m) \boldsymbol{G} **GSN** - Глобальная сейсмическая сеть IASPEI91 - глобальная скоростная модель **IMGG** - сейсмологический центр Института морской геологии и геофизики ДВО РАН (г. Южно-Сахалинск) **IMS CTBTO** - Международная система мониторинга, организованная по ДВЗЯИ **ISC** – Международный сейсмологический центр (Англия) **ISF** - Международный формат IASPEI Seismic Format – высота станции над уровнем моря (м) **HYP2DT** - программа обработки сейсмических данных LocSat – программа обработки сейсмических данных **MSK-64** Международная макросейсмическая шкала Nst - количество станций, участвовавших в определении параметров гипоцентра сейсмического события SeisComP3 - программный комплекс обработки сейсмических данных - Very Small Aperture Terminal - малая спутниковая **VSAT** наземная станция Оборудование GS-1, GS-3, GS-13 - сейсмометр короткопериодный _"_ LE-3Dlite **Kinemetrics SV1/SH1** SeisMonitor СК-1П CKM-3, CKM, CKM-3M __ !! __ **CM-3, CM-3KB** _"_ СМ-Звч _"_ СКД - сейсмометр длиннопериодный CMG-3, CMG-3T, CMG-3TB, - сейсмометр широкополосный CMG-3T-Polar, CMG-6T, CMG-6TD CMG-3ESP, CMG-3ESPC, CMG-3ESPCD, CMG-3ESPCDE CMG-40T, CMG-40T-1 CME-4011, CME-4311, _ " _ **CME-6011** KS-2000 _ '' __ L4C-3D _ " _ **STS-1, STS-2** _"_ _"_ **CM-30C** KS-36000 - сейсмометр скважинный широкополосный AC-73iHHV акселерометр CMG-5T, CMG-5TD, **CMG-5TDE FBA-23** _ '' _

"

JEP-6A3

ОСП, ОСП-2М - прибор для записи сильных движений PAR-24B, PAR-4CH – аналого-цифровой преобразователь **CMG-DAS-S6, CMG-DAS-U-S6** – цифровая регистрирующая аппаратура CMG-DM24, CMG-DM24S3AM -**CD24** _"_ DAT-4, DAT-5A _"_ DM24, DM24mk3 **EAM EVROPA** _"_ **GMS**^{plus} _"_ _''_ **GSR-24 IRIS/IDA** _"_ **IRIS/USGS LS7000XT** _''-Q330, Q330HR, Q330HRS Q680 _"_ Quanterra-4124 **RefTek 130S-01** _''_ **SDAS** _"_ **UGRA** _"_ Байкал, Байкал-8, Байкал-8.1, -Байкал-10, Байкал-11, Байкал-111, Байкал-112, Байкал-7HR, Байкал AC-75 Иркут _"_ СЦСС _"_ MC – аналог ЦСС Байкал-11

Основные параметры землетрясения

$oldsymbol{E}$	- сейсмическая энергия (Д m)
h	глубина гипоцентра (км)
t_0	– время возникновения сейсмического события
	(по Гринвичу)
δ	– погрешность определения эпицентра в целом
δh	– погрешность определения глубины гипоцентра (км)
δt_0	- погрешность определения времени возникновения (c)
δφ, δλ	– погрешность определения эпицентра по широте
	и долготе (градус, км)
λ, °	– долгота (градус)
E	– восточная долгота
φ, °	– широта (градус)
N	– северная широта
I_0	– интенсивность сотрясений в баллах по шкале MSK-64
K	– энергетический класс любой
K_{S}	– энергетический класс по С.А. Федотову
K_{P}	– энергетический класс по Т.Г. Раутиан
K_{C}	– энергетический класс по С.Л. и О.Н. Соловьёвым
M	– магнитуда, идентичная MLH (MS), пересчитанная
	из других типов магнитуд

ML — магнитуда локальная разных агентств

MLH (MLV) – магнитуда по поверхностной волне Релея *LH (LV)*

(аппаратура типа С, В/LР)

 MPH
 — магнитуда по волне PH (аппаратура типа C/LP)

 MPSP
 — магнитуда по волне PV в дальней ($\Delta > 2000 \ \kappa M$) зоне

(аппаратура типа A/SP)

MPLP — магнитуда по волне PV в дальней (∆>2000 км) зоне

(аппаратура типа С, В/LР)

MPV − магнитуда по волне *PV* (аппаратура типа C, B/MP, LP)

MPVA — магнитуда по волне *PV* в ближней (Δ <500 *км*) зоне

(аппаратура типа A/SP)

MS — магнитуда по поверхностной волне Релея LV

(аппаратура типа С, В/LР)

 MSH
 — магнитуда по волне SH (аппаратура типа C/LP)

 MSHA
 — магнитуда по волне SH в ближней ($\Delta < 500 \ \kappa M$) зоне

(аппаратура типа A/SP)

 M_0 — сейсмический момент

Мw – магнитуда моментная по Канамори

Параметры механизма очага землетрясения

 AZM
 – азимут осей (градус) главных напряжений

 DP
 – угол падения (градус) нодальной плоскости

NP1 — первая нодальная плоскостьNP2 — вторая нодальная плоскость

PL – угол погружения (градус) осей главных напряжений

относительно горизонта

 SLIP
 — угол скольжения (градус) нодальной плоскости

 STK
 — азимут (градус) простирания нодальной плоскости

T, N, P — оси главных напряжений: растяжения (T),

промежуточного (N), сжатия (P)

Параметры сейсмического режима

 A_{10} — средняя сейсмическая активность (для K=10)

– эмпирическая функция распределения выделившейся

за определенный временной интервал сейсмической

энергии

наклон графика повторяемости при использовании

магнитудной шкалы

наклон графика повторяемости при использовании

энергетических классов