Количественный анализ сейсмичности Камчатки

В.А. Салтыков, Н.М. Кравченко

Камчатский филиал ФИЦ ЕГС РАН, г. Петропавловск-Камчатский

Введение

В настоящем разделе представлена общая характеристика сейсмичности Камчатки в 2015 г. Рассматриваются такие параметры, как общая выделившаяся сейсмическая энергия, оценка уровня сейсмичности по шкале «СОУС'09», активность A_{10} , наклон графика повторяемости γ , параметры методик *RTL-*, *dS-* и «*Z*-функция». Методики расчета этих параметров описаны в ежегоднике [1]. При расчетах использованы камчатские региональные каталоги [2, 3]. Оценки сейсмичности сделаны для района, ограниченного широтой φ =50.5 и 56.5°N, долготой λ =156.0 и 167.0°E, глубиной от 0 до 300 км. Выбор зоны определяется однородностью каталога землетрясений за время детальных сейсмологических наблюдений (с 1962 г.). Нижний энергетический уровень землетрясений был определен как *K*s=8.5 по классификации С.А. Федотова [4], что соответствует уровню надежной регистрации землетрясений для камчатской сейсмоактивной зоны в целом [5].

Результаты исследования Энергия землетрясений Камчатки

Общая выделившаяся в 2015 г. сейсмическая энергия составила $1.4 \cdot 10^{14} Д ж$ при среднегодовом (за 54 года) значении $6.3 \cdot 10^{14} Д ж$ и медианном годовом значении $1.8 \cdot 10^{14} Д ж$. Для сопоставления текущего года с остальными годами по выделившейся за год сейсмической энергии используется функция распределения, построенная по всему интервалу детальных наблюдений 1962–2015 гг. (рис. II.12). Для 2015 г. функция распределения сейсмической энергии составляет 0.45 ± 0.07 , что соответствует в пределах ошибки медианному значению.

Рис. II.12. Функция распределения годовой сейсмической энергии, выделившейся при камчатских землетрясениях в 1962–2015 гг. Кружком отмечено значение, соответствующее 2015 г.

Для качественной оценки текущего уровня сейсмичности используется шкала и методика «СОУС'09», согласно которой состояние сейсмичности региона оценивается по эмпирической функции распределения, выделившейся за определенный временной интервал сейсмической энергии: $F(K)=P(\lg E \le K)$, где E – суммарная сейсмическая энергия в $\mathcal{Д}$ ж [6]. Рис. II.13 отражает изменение оценок уровня сейсмичности Камчатки в течение 2015 г. в различных временных окнах. Отмечается снижение регионального уровня сейсмичности до экстремально низкого во временных окнах от 5 до 120 суток перед серией землетрясений с магнитудой M=5.9 в сентябре-ноябре 2015 года. Также наблюдалось снижение региональной сейсмичности до низкого уровня в окне около 120 суток перед землетрясением 19 февраля с M=6.2.

Помимо этого, оценка уровня сейсмичности рассчитывалась в пространственных областях, определенных в соответствии с регионализацией сейсмоактивного объема Камчатки и прилегающих территорий [7], учитывающей тектоно-географическое положение землетрясений. В табл. II.2 приведены оценки для шести (для которых возможны статистические оценки) из десяти выделенных зон и для четырех подрегионов Камчатки, определяемых географическим положением.

Рис. II.13. Временной ход оценки уровня сейсмичности Камчатки в различных временных окнах в 2015 г.

Пространственная область	Е, Дж	$F(\lg E)$	Уровень сейсмичности	
Тихий океан	5.8·10 ¹¹	$0.24{\pm}0.08$	фоновый средний	
Северная часть	$1.2 \cdot 10^{14}$	0.59±0.10	фоновый средний	
Камчатской сейсмофокальной зоны				
Сейсмофокальная зона	$7.9 \cdot 10^{13}$	0.51±0.10	фоновый средний	
Курил и Южной Камчатки				
Корякский сейсмический пояс	$1.4 \cdot 10^{12}$	$0.69{\pm}0.09$	фоновый средний	
Командорский сегмент Алеутской дуги	$3.3 \cdot 10^{13}$	0.61±0.09	фоновый средний	
Континентальные области Камчатки	$1.0 \cdot 10^{11}$	0.76 ± 0.09	фоновый средний	
Камчатский залив	$1.7 \cdot 10^{13}$	$0.82{\pm}0.05$	фоновый средний	
Кроноцкий залив	$2.5 \cdot 10^{13}$	$0.90{\pm}0.04$	фоновый повышенный	
Авачинский залив	$8.7 \cdot 10^{13}$	0.95 ± 0.03	фоновый повышенный	
Юг Камчатки (от мыса Лопатка	6.0·10 ¹²	0.73±0.06	фоновый средний	
до Авачинского залива)				

Таблица II.2. Оценка уровня сейсмичности в 2015 г. для различных пространственных областей сейсмоактивной зоны Камчатки

Наиболее сильными сейсмическими событиями 2015 г. являются землетрясения с магнитудами *ML*=6.2, 5.5 и 5.9, произошедшие в Авачинском заливе, глубокое землетрясение на материковой части Камчатки с *ML*=5.9, землетрясение на севере Камчатского залива (*ML*=5.9) и землетрясение с *ML*=5.5 на юге сейсмоактивной зоны. Суммарная энергия, выделившаяся при этих землетрясениях, составляет 87.5% всей сейсмической энергии 2015 года. Параметры землетрясений с *ML*≥5.5 представлены в табл. II.3, приведены дата, энергетический класс *K*_S, локальная магнитуда *ML* и координаты гипоцентра [2, 8].

Число группируемых землетрясений составило всего 5% от общего количества сейсмических событий. Роевая активность в 2015 г. была незначительной. Наиболее представительный рой состоял из 17 землетрясений с $K_{\rm S}$ =8.7–12.3, произошедших с 24 по 28 марта в Кроноцком заливе.

Дата	φ, °N	λ, °E	һ, км	Ks	ML
19.02.2015	52.69	159.3	89	13.8	6.2
10.04.2015	52.92	160.2	48	12.5	5.5
17.09.2015	53.09	160.2	62	13.3	5.9
16.10.2015	55.53	159.5	295	13.3	5.9
05.11.2015	56.19	162.9	36	13.2	5.9
09.11.2015	51.61	159	59	12.5	5.5

Таблица II.3. Землетрясения с ML≥5.5, произошедшие в сейсмоактивной зоне Камчатки в 2015 г. [2, 8]

Эпицентры землетрясений 2015 г. с *ML*≥5.5 и роя показаны на рис. II.14 а.

При расчете приведенных ниже параметров сейсмичности использованы каталоги с удаленными афтершоковыми последовательностями и роями. Примененная для этого программа В.Б. Смирнова (МГУ им. М.В. Ломоносова) реализует алгоритм, описанный в [9]. Карта эпицентров независимых землетрясений 2015 г. представлена на рис. II.14 б.

Рис. П.14. Сейсмичность Камчатки в 2015 г.:

а — эпицентры сильных землетрясений и рой (показан эллипс рассеяния, содержащий 90% группированных событий, дата наиболее сильного землетрясения); б — эпицентры независимых землетрясений 2015 г. с Ks=9—14, отмечена наиболее сейсмоактивная зона

Вариации наклона графика повторяемости ү

Наклон графика повторяемости γ в 2015 г. равен 0.52±0.02 при среднемноголетнем значении 0.46±0.002. Карты площадного распределения наклона графика повторяемости землетрясений γ , построенные при сканировании исследуемой области цилиндрическими элементарными объемами с глубиной до 100 км и радиусами 100 км, представлены на рис. II.15. Для выделения наиболее значимых аномалий приведены результаты за 2013–2015 гг. На фоне среднего в целом для региона значения γ в 2013–2015 гг. выделяются значительное увеличение γ на юге Камчатки и в районе о. Беринга и уменьшение в Камчатском заливе и Камчатском полуострове. Для выявления статистически значимых изменений γ применен Z-тест (рис. II.15 в), который демонстрирует высокую статистическую достоверность упомянутых выше аномалий – на уровне значимости α =0.01.

Рис. II.15. Средние значения наклона графика повторяемости у в 2013–2015 гг. (а) и 1962–2015 гг. (б). Изменение у в 2013–2015 гг. по сравнению с многолетним фоном, нормированное на среднеквадратичное отклонение (в)

Сейсмическая активность А₁₀

Средняя по указанному району активность A_{10} в 2015 г. составила 0.229±0.007 при среднемноголетнем значении 0.276±0.001. В целом активность региона была ниже среднего на 17%. Карты значений активности A_{10} , построенные при сканировании исследуемой области цилиндрическими элементарными объемами с глубиной до 100 км и радиусами 50 км, приведены на рис. II.16. Распределение активности A_{10} в 2015 г. значительно отличается от среднемноголетнего. Отмечается снижение активности ниже среднего значения в районе Кроноцкого и Шипунского полуостровов, Авачинского и Кроноцкого заливов. В восточной части сейсмоактивной зоны активность превысила средние значения.

Рис. II.16. Средние значения сейсмической активности A₁₀ в 2015 г. (а) и 1962–2015 гг. (б). Относительная сейсмическая активность A₁₀ в 2015 г. по сравнению со средней многолетней активностью (в)

Мониторинг параметров RTL и dS

На рис. II.17 показана карта минимальных значений параметра *RTL*, наблюдавшихся в 2015 г. в сейсмоактивной области Камчатки. Штриховой линией отмечена область надежного определения параметра *RTL*. В расчете участвуют сейсмические события с глубинами гипоцентров 0–100 км. Для характерных точек аномалий рассчитан временной ход параметра *RTL*, согласно которому сейсмическое затишье севернее острова Беринга продолжалось чуть более года (с августа 2014 г. по сентябрь 2015 г.), аномалия на побережье Камчатского залива проявилась в начале 2015 г., к концу года параметр *RTL* находился в минимуме (рис. II.19). На следующем за *RTL*-аномалией этапе подготовки сильного землетрясения в окрестности *RTL*-аномалии, согласно методике Г.А. Соболева [10], должна проявиться форшоковая активизация.

На рис. II.18 представлена карта вариаций площади сейсмогенных разрывов dS в 2015 году. Область повышенных значений dS выделяется южнее острова Беринга и граничит с аномалией сейсмического затишья по параметру *RTL* (рис. II.17). Согласно графику временного хода параметра dS (рис. II.20), сейсмическая активизация проявилась практически одновременно с аномалией затишья (рис. II.19).

Ромбами отмечены характерные точки аномалии сейсмического затишья, пунктиром – область надежного определения параметра RTL

Рис. II.18. Значения dS-параметра, рассчитанные на декабрь 2015 г.

Ромбами отмечены характерные точки аномалии сейсмической активизации 2014 г. (I) и 2015 г. (II). Окружности соответствуют размеру аномалии

Рис. II.19. Временной ход RTL-параметра в характерных точках аномалии (рис. II.17)

Рис. II.20. Временной ход dS-параметра в характерных точках аномалии (рис. II.18)

Выявление сейсмических затиший по методу «Z-функция»

В 2015 г. в сейсмоактивной области Камчатки представляли интерес четыре пространственные области сейсмического затишья, выделенные с помощью «Z-функции» (рис. II.21). Графики функции Z(t), рассчитанные для выделенных зон сейсмической аномалии в скользящем временном окне 12 месяцев, приведены на рис. II.22.

Рис. II.21. Карта значений SRD>0.75 в течение 2015 г.

Области сейсмического затишья оконтурены. Отмечены эпицентры землетрясений 2015 г. с М≥5.5 с глубинами до 100 км

Рис. II.22. Зависимости Z(t), рассчитанные для зон сейсмического затишья (рис. II.21) в скользящем окне шириной 12 месяцев

В зоне I (рис. II.21, II.22) уменьшение скорости сейсмического потока в 14 раз (*SRD*=0.93) наблюдалось в течение 18 месяцев, с начала 2013 г. до середины 2014 года.

На границу зоны этого сейсмического затишья приходятся эпицентры трех землетрясений 2015 г. с $M \ge 5.5$: 19 февраля (M=6.2); 10 апреля (M=5.5); 17 сентября (M=5.9). В зоне II аномалия продолжалась также полтора года, до июня 2015 года. 19 ноября вблизи аномалии произошло землетрясение с M=5.5. Уменьшение сейсмичности в восемь раз с мая 2014 г. по октябрь 2015 г. отмечено в зоне III, на которую приходится эпицентр землетрясения с M=5.9, произошедшего 5 ноября. В зоне IV в течение года до июня 2015 г. отмечалось абсолютное сейсмическое затишье.

Заключение

На основе региональных каталогов камчатских землетрясений даны оценки параметров сейсмичности Камчатки в 2015 году. В комплекс рассматриваемых характеристик входят активность A_{10} , наклон графика повторяемости γ , параметры методик *RTL-*, *dS*и «*Z*-функции». Проведено сравнение значений параметров A_{10} и γ , полученных для 2015 г., с их средними значениями за весь период детальных сейсмологических наблюдений на Камчатке (1962–2015 гг.).

Получены следующие результаты по сейсмичности Камчатки в 2015 г.:

– в районе о. Беринга отмечено снижение сейсмической активности A_{10} , завершилась *RTL*-аномалия, наблюдаются повышенные значения dS на краю *RTL*-аномалии. Наклон графика повторяемости γ имеет повышенные значения;

– в районе Камчатского залива развивается *RTL*-аномалия, наблюдаются низкие значения *A*₁₀ и γ, завершилась *Z*-аномалия;

 – в Кроноцком и Авачинском заливах наблюдаются Z-аномалия и пониженные значения активности A₁₀ и γ;

 на южной оконечности Камчатки продолжается многолетняя аномалия высоких значений γ.

Литература

1. Салтыков В.А., Кравченко Н.М. Количественный анализ сейсмичности. Количественный анализ сейсмичности Камчатки // Землетрясения России в 2009 году. – Обнинск: ГС РАН, 2011. – С. 58–62.

2. *Part_IV-2015.* 11_*Kamchatka-and-Komandor-Islands_2015.xls* // Землетрясения России в 2015 году. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD-ROM.

3. База данных «Единая информационная система сейсмологических данных КФ ФИЦ ЕГС РАН» [сайт]. – Дата обновления 02.12.2016. – URL: http://www.emsd.ru/sdis/.

4. *Федотов С.А*. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. – М.: Наука, 1972. – 117 с.

5. Гордеев Е.И., Чебров В.Н., Левина В.И., Сенюков С.Л., Шевченко Ю.В., Ящук В.В. Система сейсмологических наблюдений на Камчатке // Вулканология и сейсмология. – 2006. – № 3. – С. 6–27.

6. *Салтыков В.А.* Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. – 2011. – № 2. – С. 53–59.

7. Левина В.И., Ландер А.В., Митюшкина С.В., Чеброва А.Ю. Сейсмичность Камчатского региона 1962–2011 гг. // Вулканология и сейсмология. – 2013. – № 1. – С. 41–64.

8. Дрознина С.Я. (отв. сост.), Карпенко Е.А., Леднева Н.А., Должикова А.Н., Назарова З.А., Митюшкина С.В., Раевская А.А. Каталоги землетрясений по различным регионам России. Камчатка и Командорские острова // Землетрясения России в 2015 году. – Обнинск: ФИЦ ЕГС РАН, 2017. – С. 157–158.

9. Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Современные методы обработки сейсмологических данных. Вычислительная сейсмология. – Вып. 24. – М.: Наука, 1991. – С. 19–50.

10. Соболев Г.А. Стадии подготовки сильных Камчатских землетрясений // Вулканология и сейсмология. – 1999. – № 4/5. – С. 63–72.