III.2. Наблюдения временными сетями

III.2.1. Сейсмичность, сопровождавшая Трещинное Толбачинское извержение 2012–2013 гг.

Ю.А. Кугаенко, В.А. Салтыков, А.А. Коновалова

27 ноября 2012 г. на Камчатке началось одно из крупнейших извержений, отмеченных в последние десятилетия на территории России, – Трещинное Толбачинское извержение им. 50-летия Института вулканологии и сейсмологии ДВО РАН (ТТИ-50) [Гордеев и др., 2013]. Это грандиозное, преимущественно лавовое, извержение произошло в южной части Ключевской группы вулканов (рис. III.14). ТТИ-50 является ярким примером извержения гавайского типа: в начальной фазе оно сопровождалось умеренными пепловыми выбросами, а в течение всего извержения наблюдались мощные фонтаны лавы и интенсивное излияние жидких лавовых потоков (рис. III.14). Извержение закончилось в конце августа 2013 года.

Рис. III.14. Трещинное Толбачинское извержение 2012–2013 гг. им. 50-летия Института вулканологии и сейсмологии ДВО РАН

Региональная сеть сейсмических станций Камчатки (см. раздел I.10 и [Чебров и др., 2013]) обеспечивает уровень надежной регистрации землетрясений Ключевской группы вулканов K_S = 4.5–5.0 (K_S – класс по энергетической классификации [Федотов, 1972]).

В начале января 2013 г. в южной части Ключевской группы вулканов силами Камчатского филиала Геофизической службы РАН и Института вулканологии и сейсмологии ДВО РАН была развернута временная сеть автономных сейсмических станций (рис. Ш.15, табл. Ш.3). Расстановка была ориентирована на усиление региональной системы сейсмологических наблюдений в районе ТТИ-50 и южной части Ключевской группы вулканов в целом и получение новых данных о сейсмичности на более низком энергетическом уровне, чем это позволяет камчатская региональная сеть.

Временная сеть состояла из широкополосных трехкомпонентных сейсмометров GURALP CMG-6TD (частотный диапазон 0.03–100 Γu), сочетающих функции датчика и цифрового регистратора и обеспечивающих достаточный срок автономной регистрации (4–5 месяцев непрерывной работы при частоте оцифровки 100 *omc/c*).

Рис. III.15. Сеть сейсмических станций в районе Ключевской группы вулканов на Камчатке, дополненная временными сейсмическими станциями

Код станции	Координаты и высота над уровнем моря			Период работы	
	φ, °N	λ, °E	<i>h</i> , м	начало	конец
T01	55.912	160.538	1633	07.01.2013	20.04.2013
T02	55.872	160.367	1596	22.01.2013	23.05.2013
T03	55.757	160.248	1053	07.01.2013	06.05.2013
T04	55.777	160.345	1757	23.01.2013	08.02.2013
T05	55.725	160.320	1280	24.01.2013	15.02.2013
T06	55.750	160.422	988	06.01.2013	10.10.2013
T07	55.693	160.308	1032	23.05.2013	09.10.2013
T08	55.642	160.217	651	07.01.2013	23.05.2013

Таблица III.3. Сведения о сейсмических станциях временной локальной сети в районе Трещинного Толбачинского извержения в 2013 г.

ТТИ-50 сопровождалось интенсивным вулканическим дрожанием, затруднявшим выделение землетрясений из сейсмической записи. На рис. Ш.16 показаны спектры сейсмических сигналов, зарегистрированных в исследуемом районе до извержения и во время извержения. Сопоставление спектров позволило оценить полосу частот вулканического дрожания: $0.7-20 \Gamma u$, максимум соответствует частоте $1-2 \Gamma u$. Превышение уровня сигнала в спектре достигает 60 ∂E , что соответствует увеличению амплитуды в 10^3 раз. Исходя из этого был выбран частотный диапазон обработки локальных землетрясений. Для выделения сейсмических событий использовался полосовой фильтр Баттерворта второго порядка в полосе частот $8-16 \Gamma u$.

Рис. III.16. Выделение в спектре сейсмической записи возмущений, обусловленных извержением (вулканическим дрожанием):

1 — спектры записей, полученных в районе ТТИ-50 до извержения;

2 – спектры записей со станций T04 и T05, работавших в непосредственной близости от извержения

Обработка проводилась с помощью интерактивной программы DIMAS [Дрознин, Дрознина, 2010] с использованием скоростной модели среды, описанной в [Сенюков, 2006], что соответствует средствам, применяющимся в КФ ГС РАН для обработки землетрясений Ключевской группы вулканов. Результаты первого этапа обработки, в ходе которого был проведен перерасчет гипоцентров землетрясений, зарегистрированных региональной сетью в Толбачинской вулканической зоне, с привлечением дополнительных данных, полученных временными станциями, представлен в [Салтыков и др., 2013]. Энергетический класс этих событий не переопределялся.

В ходе второго этапа обработки были определены гипоцентры и энергетический класс K_S всех остальных локальных землетрясений, зарегистрированных временными станциями. В ряде случаев при необходимости в обработку включались записи ближайших к извержению региональных сейсмостанций. Во временном интервале с 7 января по 10 октября 2013 г. локализовано более 700 землетрясений, что на порядок превышает число сейсмических событий, зарегистрированных региональной сетью. Причиной обнаружения большего числа событий явилось использование полосовой фильтрации в частотном диапазоне 8–16 $\Gamma \mu$, что позволило уверенно выявлять локальные землетрясения в условиях интенсивного вулканического дрожания. На рис. III.17 представлены карты эпицентров землетрясений по данным временной сети (рис. III.17 а) и региональных станций (рис. III.17 б) за указанный период времени.

Карты существенно различаются между собой. По данным временной сети выделены компактные области пространственной концентрации эпицентров (группы I–IV, рис. III.17 а).

Группа I пространственно совпадает с эруптивным центром ТТИ-50. Основная масса событий – слабые поверхностные землетрясения $K_S=3-4$, $h<2 \kappa M$. Большинство из них были зарегистрированы в период работы станций Т04 и Т05, установленных на непродолжительное время в непосредственной близости к извержению, в конце января – начале февраля 2013 года.

Группа II – наиболее многочисленный кластер землетрясений, расположенный к югу от вулкана Плоский Толбачик на восточном склоне Толбачинского Дола. Энергетический класс K_S достигает значений 6–6.5, наиболее глубокие землетрясения тяготеют к подножию вулкана Плоский Толбачик и имеют глубину до 20 км. Группа II пространственно соединяет вулкан Плоский Толбачик и область сильного роя землетрясений, произошедшего в первые дни ТТИ-50 [Кугаенко и др., 2014]. Вероятно, эта сейсмичность связана с внедрением и распространением не вышедшей на поверхность магмы (не реализовавшийся прорыв извержения).

Рис. III.17. Сейсмичность в районе ТТИ-50 и вулкана Плоский Толбачик 07.01.2013 г. – 10.10.2013 г. по данным временной локальной (а) и региональной (б) сетей

Группа III – сгущение эпицентров на северо-восточном склоне вулкана Плоский Толбачик. Прорабатывается диапазон глубин до 17 км. Максимальный зарегистрированный класс $K_{\rm S}$ =6.2.

Группа IV относится к западной части недействующего вулканического массива Зимина. Отметим, что локализованное по данным региональной сети облако землетрясений, рассеянных между вулканами Плоский Толбачик, Удина и Зимина (рис. III.17 б), после добавления в обработку временных станций компактизировалось и переместилось под вулканический массив Зимина (рис. III.17 а), что было ранее отмечено в [*Салтыков и др.*, 2013]. Интересно, что этот кластер землетрясений имеет структуру, близкую к кольцевой. Глубина сейсмических событий варьируется от приповерхностных до заглубленных до 15–17 *км*. В рассматриваемый период времени на глубине 17 *км* произошло сильнейшее зарегистрированное под вулканом Зимина землетрясение с K_S =8.5. Вулкан Зимина требует обратить на себя более пристальное внимание в контексте оценки вулканической опасности.

На рис. III.17 а эллипсом отмечена область сейсмической активизации, предварявшей извержение в течение нескольких месяцев, в июле–ноябре 2012 г. на глубине до 5 км под вулканом Плоский Толбачик [*Салтыков и др.*, 2012, 2013]. В январе– октябре 2013 г. сейсмичность этой области была представлена лишь отдельными разноглубинными событиями без тенденции к группированию, в то время как на периферии вулкана Плоский Толбачик мы выявили сгущения землетрясений (группы I–III). Можно говорить об инверсии сейсмичности, имевшей место в ходе ТТИ-50 и связанной, вероятно, с миграцией магмы.

На рис. III.17 а номером V выделена еще одна интересная в сейсмическом отношении область – район так называемой Толудской эпицентральной зоны (ТЭЗ). ТЭЗ была выявлена ранее в ходе исследований сейсмичности Большого трещинного Толбачинского извержения 1975–1976 гг., ее сейсмическая активность в 1975 г. связывается с оттоком базальтов на малых глубинах из-под вулкана Плоский Толбачик [Большое..., 1984]. ТЭЗ занимает юго-восточный сектор Ключевской группы вулканов и пространственно соответствует обширной долине реки Толуд, где отсутствуют поверхностные проявления современного вулканизма, однако регистрируются землетрясения с глубиной до 20–30 км. Новым результатом, полученным по данным временной сети, является ярко выраженная группируемость землетрясений в ТЭЗ. Причем кластеры землетрясений очерчивают дугообразные структуры. Предстоит разобраться, является ли эта особенность проявлением местной тектоники или артефактом обработки. ТЭЗ требует специально спланированных исследований сейсмичности и глубинного строения.

На рис. III.18 приведены кумулятивные графики числа землетрясений, локализованных временной и региональной сетями. В связи с тем, что конфигурация временной системы наблюдений менялась, полученный материал не является однородным и не позволяет корректно определить ее уровень надежной регистрации. Однако можно оценить соотношение числа событий, зарегистрированных временной и региональной сетями. Согласно фактографической базе данных КФ ГС РАН «Активность вулканов Камчатки», уровень надежной регистрации региональной сети для района ТТИ-50 составляет $K_{\rm S}$ =4.9.

Рис. III.18. Кумулятивные графики числа землетрясений, зарегистрированных региональной (1) и временной (2) сетями 07.01.2013 г. – 10.10.2013 г.

График, отражающий результаты детального мониторинга зоны извержения, уже с $K_{\rm S}$ =6.5 проходит выше кривой, построенной для региональной сети. С уменьшением $K_{\rm S}$ разрыв между графиками увеличивается. Следовательно, для рассматриваемого района представительность региональной сети значительно завышена и не отражает реальные возможности системы сейсмического мониторинга. Встает вопрос о пересмотре методики определения этого параметра для южной части Ключевской группы вулканов.

Временными сейсмическими станциями записан также завершающий этап ТТИ-50. На сейсмической записи видно, что процесс развивался стремительно, а вулканическое дрожание угасло в течение всего нескольких часов (рис. III.19).

Заключение

В январе-октябре 2013 г. в южной части Ключевской группы вулканов работала временная локальная сеть автономных сейсмических станций Guralp CMG-6TD, целью которой являлось исследование сейсмичности, сопровождавшей Трещинное Толбачинское извержение.

Был оценен диапазон вулканического дрожания $0.7-20 \Gamma u$ с максимумом на частоте $1-2 \Gamma u$. Исходя из этого, для массовой обработки локальных землетрясений был выбран частотный диапазон $8-16 \Gamma u$. В результате локализовано более 700 землетрясений, что на порядок превышает число сейсмических событий, зарегистрированных региональной сетью.

Результаты работы временной локальной сети указывают на то, что для района ТТИ-50 и вулкана Плоский Толбачик представительность региональной сети значительно завышена.

Обнаружено, что сейсмичность в районе вулкана Плоский Толбачик неравномерна. Выявлены пространственно разнесенные кластеры землетрясений на периферии вулкана Плоский Толбачик, один из которых соответствует действовавшему эруптивному центру ТТИ-50, а два других не связаны с поверхностными проявлениями вулканизма, однако могут рассматриваться как отражение миграции, не вышедшей на поверхность магмы. При этом область предварявшей ТТИ-50 малоглубинной сейсмической активизации под вулканом Плоский Толбачик в ходе извержения потеряла активность. Наблюдаемая инверсия сейсмической активности соответствует динамике магматической питающей системы.

В районе вулканического массива Зимина и Толудской эпицентральной зоны выявлены необычные кластеры землетрясений, соответствующие круговым и дугообразным структурам. Эта сейсмичность требует дополнительных исследований для выяснения природы обнаруженных объектов.

По результатам обработки материалов временной сети составлен каталог «Район Трещинного Толбачинского извержения 2012–2013 гг.» из 731 землетрясения с ML=(-0.3)–3.5 ($K_{\rm S}$ =1.0–8.5) (раздел IV на CD-ROM). В печатном варианте каталога (раздел IV.16) опубликованы параметры 100 землетрясений с уровня ML≥1.9.

Работа выполнена при частичной поддержке научных проектов РФФИ 13-05-00117-а и 13-05-10033-к.