III.2.2. Эпицентральная область Чуйского землетрясения 27.09.2003 г. с *М*=7.3. Наблюдения 2010–2012 гг.

А.А. Еманов, Е.В. Лескова, А.Ф. Еманов, А.В. Фатеев, Ю.И. Колесников

В 2010–2012 гг. были продолжены мониторинговые сейсмологические наблюдения в эпицентральной области Чуйского землетрясения 27.09.2003 г. с *М*(*MS*)=7.3 в Чуйско-Курайской зоне Горного Алтая.

За 2010–2011 гг. анализ сейсмичности приведен по материалам обработки данных временных сетей станций с привлечением станций стационарной сети Алтае-Саянской горной области, за 2012 г. – только по данным обработки стационарной сети. При этом необходимо отметить, что Чуйско-Курайская зона Горного Алтая находится практически в центре уплотненной сейсмостанциями части стационарной сети – Алтайского сейсмологического полигона, на территории которого представительная регистрация событий начинается с пятого энергетического класса ($ML\approx1$), а ошибка локации эпицентров не превышает 2 км [Еманов А.Ф., Лескова Е.В., 2010].

В 2010 г. в Чуйско-Курайской зоне дополнительно выставлялись 14 временных сейсмостанций, в 2011 г. – 20. Их положение и периоды работы приведены в табл. III.4.

Код станции	Координаты и высота над уровнем моря			Период работы			
				2010 г.		2011 г.	
	φ, °N	λ, °Ε	<i>h</i> , м	начало	конец	начало	конец
ADJT	50.173	88.074	1660			10.06	31.08
AKOL	49.900	87.968	2327			09.06	3.09
ATRU	50.078	87.777	2163	15.06	26.09		
CB00	50.352	87.472	1252	13.06	13.09		
CB03	50.340	87.399	1100	14.06	16.09		
CB07	50.205	87.613	1949	01.08	22.08		
CB08	50.225	87.640	1906	02.08	08.08	04.06	31.08
CB13	50.360	87.617	1861	12.06	24.09	02.06	01.09
CB16	50.433	87.555	1946			11.06	30.08
CB19	50.179	87.676	1870			04.06	31.08
CC01	50.347	87.561	2098	12.06	25.09	02.06	01.09
CC02	50.181	87.838	1622	15.06	22.09	03.06	31.08
CC04	49.824	88.038	2471			07.06	02.09
CC06	49.798	88.177	2400	15.06	21.09	06.06	02.09
CC07	49.864	88.332	2103			06.06	02.09
CD00	50.327	87.471	1133	14.06	23.09		
CE00	50.337	87.412	1104			08.06	01.09
CE01	49.956	87.883	2098			10.06	03.09
CHUZ3	50.011	88.291	1988	16.06	06.10	09.06	03.09
ELIV	49.919	88.212	2205			07.06	02.09
IVER	49.917	88.133	2389			07.06	03.09
M23	50.318	87.725	2227	12.06	30.09	05.06	30.08

Таблица III.4. Сведения о станциях временной локальной сети АСФ ГС СО РАН в 2010–2011 гг.

Код станции	Координаты и высота над уровнем моря			Период работы			
				2010 г.		2011 г.	
	φ, °N	λ, °E	<i>h</i> , м	начало	конец	начало	конец
RKUR	50.281	87.949	1803	13.06	02.08	03.06	03.09
SALG	50.197	87.746	1830			04.06	31.08
TALD	49.965	87.922	2129	16.06	16.09		
TYTO	50.120	87.922	1769			10.06	31.08

Обработка данных осуществлялась с использованием системы seiscomp3 программой LocSat в рамках глобальной скоростной модели IASPEI91 (раздел I.5).

Для 2010–2011 гг. анализ сейсмичности представлен за периоды работы временных сетей станций: с 13 июня по 31 августа 2010 г. и с 10 июня по 31 августа 2011 года. За указанные периоды зарегистрировано событий: в 2010 г. – 3275 (в диапазоне магнитуд –0.9 \leq ML \leq 3.2), в 2011 г. – 6616 (–1.1 \leq ML \leq 4.2).

Каталоги землетрясений с $M \ge 0$ ($ML \ge 1.0$) за периоды с 13.06 по 31.08.2010 г. и с 10.06 по 31.08.2011 г., составленные по данным временных сетей станций, опубликованы в разделе IV на CD-ROM и представлены 341 событием в 2010 г. и 639 событиями в 2011 году.

Как видно из графика распределения числа землетрясений в зависимости от энергии (рис. III.19), в целом можно говорить о повышении уровня сейсмической активности в Чуйско-Курайской зоне Горного Алтая летом 2011 г., по сравнению с тем же интервалом 2010 года. Об этом свидетельствуют ряд зарегистрированных относительно сильных событий с $ML \ge 3.3$ в 2011 г. и отсутствие таковых в 2010 г., а также большее количество более слабых землетрясений с представительной магнитуды 0.5.

Рис. III.19. График повторяемости землетрясений, зарегистрированных в Чуйско-Курайской зоне в периоды работы локальных сетей станций в 2010 и 2011 гг.

Общая картина распределения землетрясений за указанные временные диапазоны сопоставима с предыдущими годами [Еманов А.А. и др., 2009, 2010, 2011; Еманов А.Ф. и др., 2011]: традиционно сейсмически активна афтершоковая область, сформировавшаяся в первые дни после Чуйского землетрясения 2003 г. – вдоль границ Северо-Чуйского и Южно-Чуйского хребтов с Курайской и Чуйской впадинами; отчетливо выделяются четыре элемента структуры, выявленные в более ранних работах; зарегистрированы землетрясения в Айгулакском хребте (рис. III.20).

При этом обращает на себя внимание ряд особенностей в распределении землетрясений:

– во-первых, отмечается увеличение числа и энергии событий в Айгулакском хребте в 2011 г., в то время как в 2010 г. самые сильные события (на уровне магнитуды *ML*≈3) распределены вдоль всей афтершоковой области Чуйского землетрясения;

– во-вторых, наблюдается увеличение количества событий во внутренних структурах Северо-Чуйского и Южно-Чуйского хребтов в 2010–2011 гг., а 19.07.2011 г. в Северо-Чуйском хребте произошло землетрясение с *M*=3.8 (*ML*=4.2) – самое сильное за период работы локальной сети станций; – в-третьих, в 2011 г. отмечается цепочка событий на северо-западе Курайской впадины, уходящая на северо-восток и заканчивающаяся в северных отрогах Курайского хребта двумя землетрясениями с *ML*=3. Относительно предыдущих лет Курайский хребет также выглядит сейсмически более активным в 2011 году.

Рис. III.20. Сейсмические станции и эпицентры землетрясений в Чуйско-Курайской зоне в 2010 г. (а) и 2011 г. (б). Сокращения: КВ – Курайская впадина, ЧУБ – Чаган-Узунский блок, ЧВ – Чуйская впадина

На диаграмме распределения зарегистрированных событий с глубиной (рис. III.21) видно, что основная афтершоковая область (расстояние по линии сноса $-40 \div 40 \ \kappa m$) формируется до глубин 18 κm в виде чаши с сужением в нижней части и расширением в верхней. Сейсмическая активизация в Айгулакском хребте ($-75 \div -60 \ \kappa m$) развивается в виде двух наклонных в сторону афтершоковой области групп событий с глубинами также $0-18 \ \kappa m$. Примечательным является факт наличия землетрясений между двумя активизациями ($-60 \div -40 \ \kappa m$), что может свидетельствовать о стремлении к объединению этих зон через сложную систему блоков (приподнятый блок Курайской впадины, Курайский хребет, Айгулакский хребет).

Рис. III.21. Распределение землетрясений, зарегистрированных в Чуйско-Курайской зоне в периоды работы локальных сетей станций в 2010 и 2011 гг., по глубине вдоль линии активизации (с северо-запада на юго-восток) с точкой отсчета в эпицентре Чуйского землетрясения 2003 года

Большинство сильных событий с $M \ge 2.4$ ($ML \ge 3$) в 2011 г. зарегистрировано в зоне, где 30 июля 2012 г. в 22^h30^m произошло землетрясение с M (MS)=4.6 (ML=6.1), ставшее самым сильным в Чуйско-Курайской зоне после Чуйского землетрясения с M=7.3 и двух его сильнейших афтершоков (MS=6.5 и 6.7) 2003 г. [*Еманов А.Ф. и др.*, 2009].

Землетрясение ощущалось на всей территории Горного Алтая и в отдельных населенных пунктах соседних регионов – Алтайского края, Кемеровской области, Республики Хакасия и Республики Тыва. Очаг землетрясения находился северо-западнее основной области распространения афтершоков Чуйского землетрясения, в Айгулакском хребте (рис. III.22 а). Эта зона и ранее представляла особый научный интерес, поскольку Айгулаский хребет не был охвачен афтершоковым процессом, а, начиная с 2007 г., в этой области наблюдалась ярко выраженная роевая сейсмичность. Причем подобная роевая сейсмичность отмечалась здесь до Чуйского землетрясения на протяжении всего периода инструментальных наблюдений и полностью исчезла после него, вплоть до 2007 г. [*Еманов А.А. и др.*, 2009].

Рис. III.22. Эпицентры землетрясений в Чуйско-Курайской зоне в 2012 г. (а). График повторяемости афтериюков землетрясения 30.07.2012 г. в Айгулакском хребте (б). Сокращения: КВ – Курайская впадина, ЧУБ – Чаган-Узунский блок, ЧВ – Чуйская впадина

Сейсмическое событие 30.07.2012 г. в $22^{h}30^{m}$ сопровождалось афтершоками, самые сильные из которых имели магнитуду M=3.1 (ML=3.6, 30 июля в $22^{h}52^{m}$) и M=3.3 (ML=3.8, 8 октября в $16^{h}09^{m}$). За период 30 июля – 31 декабря 2012 г. стационарной сетью Алтае-Саянского региона и станциями Алтайского сейсмологического полигона было зарегистрировано 327 афтершоков в диапазоне магнитуд $0 \le ML \le 3.8$, параметры 190 из них с $M \ge 0$ ($ML \ge 1.0$) опубликованы в каталоге (раздел IV.17 и раздел IV на CD-ROM). График повторяемости для этих событий (рис. III.21 б) выполняется, начиная с ML=1, то есть можно говорить, что стационарная сеть позволяет регистрировать без пропусков землетрясения в области Айгулакского хребта с ML>1. Афтершоки обособились в узкую зону, вытянутую на 20 км в субмеридиональном направлении (рис. III.21 а). Механизм очага толчка 30 июля, как и при Чуйском землетрясении 2003 г. [*Еманов А.Ф. и др.*, 2009], – чистый сдвиг (рис. III.21 а, см. также раздел VI).

4 августа 2012 г., через пять дней после землетрясения, в Чуйско-Курайской зоне начались, ставшие уже традиционными, ежегодные работы по установке временной сети, четыре дополнительные станции были выставлены и в районе сейсмической активизации в Айгулакском хребте. Обработка данных, зарегистрированных временной сетью из 22 станций в период 4 августа – 20 октября, позволит более детально изучить особенности протекания сейсмического процесса как в эпицентральной области Чуйского землетрясения, так и активизации 2012 г. в Айгулакском хребте.

Еще одно событие с M=3.9 ($M_{\rm C}=4.0$, ML=5.1) было зарегистрировано на юговосточном окончании афтершоковой области Чуйского землетрясения 20 октября в $22^{\rm h}46^{\rm m}$ (см. в разделе IV.4). Таким образом, Чуйско-Курайская зона в 2012 г. характеризуется повышенной сейсмической активностью, превышающей предыдущие восемь лет.

Результаты

Сейсмическая активность в Чуйско-Курайской зоне в 2011 г. оказалась выше, чем в 2010 г., а в 2012 г. превысила показатели за предыдущие восемь лет после сильного Чуйского землетрясения 2003 года.

В 2011 г. в Айгулакском хребте отмечалась роевая сейсмичность, которая по энергии событий доминировала в Чуйско-Курайской зоне, а в 2012 г. в Айгулакском хребте произошло землетрясение с *M* (*MS*)=4.6 (*ML*=6.1), ставшее самым сильным в Чуйско-Курайской зоне после сейсмической активизации 2003 года.

По землетрясениям малых энергий усматривается связь роевой сейсмичности в Айгулакском хребте с афтершоковым процессом Чуйского землетрясения через сложную систему блоков (приподнятый блок Курайской впадины, Курайский хребет, Айгулакский хребет).

Установлена тенденция распространения сейсмического процесса в 2010–2011 гг. от афтершоковой области в глубь Южно-Чуйского, Северо-Чуйского и Курайского хребтов, что в совокупности с сейсмическими активизациями в Айгулакском хребте в 2011–2012 гг. позволяет рассматривать это как расширение области, задействованной сейсмическим процессом, после Чуйского землетрясения 2003 г. в Чуйско-Курайской зоне Горного Алтая.