III.2. Наблюдения временными сетями

III.2.1. Афтершоковая область Тувинских землетрясений 27.12.2011 г. с *M*=6.6 и 26.02.2012 г. с *M*=6.8

А.Ф. Еманов, А.А. Еманов, Е.В. Лескова, А.В. Фатеев, В.Г. Подкорытова

26 февраля 2012 г. в 06^h17^m на территории Республики Тыва в районе хребта Академика Обручева в 94 *км* к северо-востоку от г. Кызыла произошло сильнейшее в этом году в регионе землетрясение с $M (MS^1)$ =6.8 (ML=6.8, φ =51.74°N, λ =95.99°E, h=9 *км*).

Землетрясение произошло спустя два месяца после сравнимого по энергии события 27 декабря 2011 г. в $15^{h}21^{m}$ с M(MS)=6.6 (ML=6.7, $\varphi=51.82^{\circ}N$, $\lambda=95.93^{\circ}E$, h=17 км), а эпицентр его располагался на южном окончании афтершоковой области, сформировавшейся после декабрьского землетрясения 2011 года. Данные сейсмические события получили названия «Тувинское-I» и «Тувинское-II» землетрясения, соответственно. Афтершоковые процессы двух крупнейших землетрясений перекрывают друг друга в пространстве и времени, что указывает на единство тектонического процесса для них.

Результаты предварительного исследования были сформулированы в [Еманов $A.\Phi.$, Еманов A.A. и dp., 2013], где ведущая роль в создании критического напряженного состояния в эпицентральной зоне Тувинских землетрясений 2011–2012 гг. отдается процессу медленного выдавливания клинообразного хребта Ыдык с юга на север.

В данной работе представлены результаты обработки данных временной сети из шести станций, действовавшей в эпицентральной области Тувинских землетрясений с 9 февраля по 15 марта 2012 г. (табл. III.3, рис. III.15).

Код станции	Координаты и высота над уровнем моря			Период работы	
	φ, °N	λ, °Ε	<i>h</i> , м	начало	конец
TW551	51.719	95.734	1074	09.02.2012	15.03.2012
TW552	51.302	95.809	781	10.02.2012	15.03.2012
TW553	52.084	95.993	1587	12.02.2012	14.03.2012
TW554	51.992	95.570	1766	12.02.2012	14.03.2012
TW555	51.742	95.428	989	13.02.2012	14.03.2012
TW556	51.625	95.691	913	13.02.2012	15.03.2012

Таблица III.3. Сведения о станциях временной локальной сети АСФ ГС СО РАН в эпицентральной области Тувинских землетрясений в 2012 г.

Труднодоступность мест обусловила размещение временных сейсмостанций в азимуте 180° с северо-запада от активизации (рис. III.15). Помимо данных временной сети, по мере возможности, для обработки привлекались и данные региональных станций, ближайшие из которых – «Кызыл» и «Тоджа» – находились в 80–100 км от эпицентров событий. В плане расположения стратегически важной стала открытая 4 марта 2012 г. самая восточная в регионе сейсмостанция «Кунгуртук» (раздел I.5) в 170 км на юго-восток от афтершоковой области.

¹ Инструментальное значение, рассчитанное по телесейсмическим записям (ред.).

Рис. III.15. Сейсмические станции в окрестности Тувинских землетрясений 2011-2012 гг.

Обработка данных сейсмической сети велась с использованием системы seiscomp3 и стандартной усредненной скоростной модели IASPEI91, энергия событий представлена в магнитудах ML (раздел I.5). За период работы временной сети (9 февраля – 14 марта) зарегистрированы и получены параметры около 40 тыс. афтершоков в пределах магнитуд –0.8 \leq ML \leq 5.9. При этом Тувинское-II землетрясение произошло уже во время работы временной сети, и, таким образом, получены несравнимо более детальные данные о сейсмическом процессе на стадии подготовки сильного землетрясения и последовавшей афтершоковой активизации.

Каталог афтершоков Тувинских землетрясений, опубликованный в разделе IV на CD-ROM, составлен по данным временной сети станций и представлен 850 событиями с $ML \ge 3.0$ за период с 10 февраля по 14 марта 2012 года. Печатный вариант каталога представлен (раздел IV.16) 153 событиями с $M \ge 3.3$ ($ML \ge 3.8$).

График повторяемости для 850 афтершоков, зарегистрированных временной сетью (9 февраля – 14 марта), приведен на рис. III.16. Параметры графика повторяемости в его линейной части (*ML*=1.5–5.5) имеют вид:

 $lgN(ML) = -0.85 \cdot ML + 5.42.$

Рис. III.16. График повторяемости афтершоков Тувинских землетрясений 2011–2012 гг. для периода работы локальной сети (9 февраля – 14 марта 2012 г.)

На рис. III.17 представлены карты эпицентров (а–г) и плотности событий (д–з) в эпицентральной области Тувинских землетрясений для разных временных интервалов. Карты на рис. III.17 а и III.17 д соответствуют длительному периоду за афтершоками (около двух лет) с $ML \ge 3$. Полученная картина более всего соответствуют модели сейсмического процесса, описанной в работе [*Еманов А.Ф.*, *Еманов А.А. и др.*, 2013], объясняющей роль выдвижения к северу блока хребта Ыдык в создании напряженного состояния и протекании сейсмического процесса в эпицентральной зоне.

Рис. III.17. Карты эпицентров (а–г) и плотности событий (д–з) в эпицентральной области Тувинских землетрясений

В данной работе основу для анализа составили материалы наблюдений за афтершоковым процессом с использованием временных сетей станций, позволяющие на уровне землетрясений малых энергий оценивать пространственно-временные особенности развития афтершокового процесса.

Как видно из рис. III.17 б, е, в период между Тувинскими землетрясениями афтершоковый процесс развивался вдоль линейной зоны по Каахемскому разлому. После Тувинского-II землетрясения, как следует из рис. III.17 в, ж, развитие определяется разветвляющейся структурой Каахемского разлома [*Аржанников*, 2003] и представляет из себя расширенный участок афтершокового процесса. На карте эпицентров землетрясений (рис. III.17 в) мы видим двойственность облака афтершоков с одним направлением вдоль Каахемского разлома и другим, уходящим в сторону на юго-восток вместе с хребтом Час-Тайга, из чего создается впечатление, что мы имеем дело с вполне равнозначным развитием афтершокового процесса в двух отмеченных направлениях. Но карта плотности событий для этого же интервала времени (рис. III.17 ж) показывает ярко выраженное направление развития афтершокового процесса вдоль хребта Час-Тайга. Данное доминирование выявлено по большому количеству землетрясений малых энергий.

Для периода после окончания работы временной сети распределение наиболее сильных афтершоков в пределах структуры Каахемского разлома (рис. III.17 г) и карта их плотности (рис. III.17 з) напоминают аналогичную для всего двухлетнего периода наблюдений, построенную по крупным землетрясениям (рис. III.17 а, д), но с меньшей контрастностью.

Надежное определение глубин землетрясений возможно для периода работы сети временных станций. На рис. III.17 представлены разрезы по глубине по линии вдоль активизации и простирания Каахемского разлома (линия А–В на рис. III.17 б, в) для событий до Тувинского-II землетрясения с 9 по 26 февраля (рис. III.18 а) и после него – с 26 февраля по 14 марта (рис. III.18 б). Ясно, что рис. III.18 а характеризует разрез структуры афтершокового процесса перед Тувинским-II землетрясения, а не структуру афтершокового процесса после Тувинского-I землетрясения.

Рис. III.18. Распределение афтершоков, зарегистрированных временной сетью станций, с глубиной по линии вдоль активизации: a) до Тувинского-II (с 9 февраля по 26 февраля 06^h16^m); б) после Тувинского-II (с 26 февраля 06^h16^m по 14 марта). Звездочками показаны гипоцентры Тувинских землетрясений (обозначение см. на рис. III.15)

В соответствии с рис. III.17 е к северу от эпицентра Тувинского-I землетрясения наблюдалась наибольшая афтершоковая активность, а на разрезе (рис. III.18 а) зафиксированы только остатки этой активности в виде вытянутой от очага к дневной поверхности наклонной полосы, заполненной гипоцентрами событий.

Наибольшее число событий перед Тувинским-II землетрясением произошло на двух участках: один накрыл эпицентр главного события афтершоками на глубинах от 10 до 17 км, а другой представлен полосой в разрезе на глубинах до 10 км с медленным уменьшением глубин афтершоков к югу (рис. III.18 а).

Другая особенность, которую можно отметить из рис. III.18, – до Тувинского-II землетрясения основная масса событий происходила до глубин 20 км, а после него – до глубин 30 км, в то время как Тувинское-II землетрясение имеет меньшую глубину (9 км), чем Тувинское-I (17 км).

Тувинское-II землетрясение (рис. III.18 б) в значительной степени изменило пространственную структуру афтершокового процесса. Во-первых, очаг февральского землетрясения произошел за краем наиболее активного участка афтершоков декабрьского события; во-вторых, очаг Тувинского-I землетрясения локализуется с краю от наиболее активизированной области после Тувинского-II землетрясения, в-третьих, полоса (в разрезе) событий с глубинами менее 10 *км* ослабла с севера и продвинулась к югу.

Результаты

В данной работе осуществлено более детальное, по сравнению с предыдущим исследованием, изучение особенностей развития афтершокового процесса Тувинских землетрясений 2011–2012 гг. В итоге на новом уровне обоснованности подтверждены выводы предыдущей работы [*Еманов А.Ф., Еманов А.А. и др.*, 2013]:

– ведущую роль в создании напряженного состояния в эпицентральной зоне Тувинских землетрясений сыграл процесс медленного выдавливания клинообразного хребта Ыдык к северу;

 Тувинское-І землетрясение 27.12.2011 г., являющееся сдвигом вдоль Каахемского разлома, сформировало афтершоковую область, преимущественно распространившуюся к югу до северного окончания хребта Ыдык;

– Тувинское-II землетрясение 26.02.2012 г. – взброс на северном конце хребта Ыдык – это начало активного процесса, ведущего к разрядке напряжений за счет смятия со взбросовыми подвижками блока, выдвигающегося к северу, и зоны контакта с ним. Наибольшее число землетрясений происходит по разломам, являющимся гранями клинообразного завершения хребта Ыдык;

– афтершоковые процессы двух крупнейших землетрясений сливаются в одно целое, и это отражает единство тектонического процесса для них.

На основе более детальной информации, особенно о землетрясениях малых энергий, получены дополнительные результаты:

– по землетрясениям малых энергий после Тувинского-II землетрясения выявлен активный участок, уходящий к востоку от Каахемского разлома вместе с хребтом Час-Тайга;

– установлено, что перед Тувинским-II землетрясением (в разрезе) в зоне афтершоковой активности выделяются три области: собственно эпицентральная на глубинах 10–20 км; северная – в виде полосы от эпицентра декабрьского землетрясения с крутым выходом к дневной поверхности на северном окончании афтершокового процесса; мелкофокусная зона на глубинах до 10 км с пологим наклоном к дневной поверхности, уходящая к южному окончанию афтершокового процесса;

– после Тувинского-II землетрясения область активизации сместилась к югу и углубилась до 30 *км*. Мелкофокусная зона на глубинах до 10 *км* сократилась с севера и удлинилась к югу.