III.1.5. Район архипелага Шпицберген

А.Н. Виноградов, С.В. Баранов

Введение

Кольский филиал ГС РАН в 2008 г. проводил непрерывный мониторинг сейсмичности архипелага Шпицберген, используя данные региональной сейсмической сети, состоящей из двух трехкомпонентных цифровых станций КоФ ГС РАН (BRBA и BRBB), расположенных в районе пос. Баренцбург. При сводной обработке привлекались данные сейсмической группы SPI (NORSAR, Норвегия), расположенной в районе г. Лонгиербин и трехкомпонентной станции KBS (IRIS, США) в пос. Нью-Олесунд. Данные станций сети KORS на Шпицбергене приведены в табл. I.7, расположение всех станций показано на рис. III.11.

5-х компонетная станция — Сеисмическая группа

Рис. III.11. Сеть сейсмических станций на архипелаге Шпицберген в 2008 г.

С геолого-тектонической точки зрения район Шпицбергена представляет пассивную окраину Евразийской плиты, граничащую с зонами ультрамедленного спрединга в областях молодого океанообразования в Северной Атлантике (хребты Книповича, Мона, Шпицбергенская зона разломов) и Северном Ледовитом океане (хребет Гаккеля). Вследствие этого регион слабо подвержен воздействию энергетических импульсов, обусловленных концентрацией и разрядкой деформационных напряжений в спрединговых зонах вышеуказанных срединно-океанических хребтов, а также впадине Моллой и трансформных межплитных швах типа Шпицбергенской зоны разломов (ШЗР).

Общая сейсмичность района архипелага Шпицберген

Основная масса ощутимых землетрясений тектонической природы проявляется в узкой полосе, вытянутой вдоль Срединного Северо-Атлантического хребта от спредингового центра впадины Моллой вдоль хребтов Книповича и Мона (рис. III.12). Срединно-Атлантический сейсмический пояс в районе хребта Книповича значительно расширяется, что можно рассматривать как свидетельство современной активизации спрединга в этой зоне молодого океанообразования. Центральные области Баренцевоморско-Карской шельфовой плиты практически асейсмичны (рис. III.12). Исключением является западная окраина Баренцевоморского шельфа, охватывающая также континентальный склон и Свальбардское поднятие, морфологически проявленное в виде архипелага Шпицберген. Здесь в районе пролива Стур-фьорд зафиксировано поле сейсмичности, которое трудно увязать с закартированными в этом районе дизъюнктивными структурами на дне моря и суше островов.

Рис. III.12. Сейсмогенные зоны района архипелага Шпицберген и эпицентры землетрясений с ML³3, произошедших в 1999–2008 гг.

В табл. III.5 приведены годовые вариации количества землетрясений и сейсмической энергии, выделившейся в сейсмогенных зонах Шпицбергена в 1999–2008 гг., а также средние значения за период 1999–2007 гг. Эти данные показывают, что наблюдается значительное различие в количестве сейсмических событий и энерговыделении в сейсмогенных зонах архипелага. В 2008 г. во всех сейсмогенных зонах (за исключением пролива Стур-фьорд) наблюдалось пониженное выделение сейсмической энергии, по сравнению со средним значением за 1999–2007 гг. В то же время наблюдалось аномально высокое энерговыделение на континентальной окраине, обусловленное сильнейшим внутриплитовым землетрясением с Mw=6.1, произошедшим 21.02.2008 г. в проливе Стур-фьорд. Можно констатировать, что в 2008 г. произошла разрядка напряжений, накопленных в континентальной окраине. Более того, сейсмическая активность района пролива Стур-фьорд на осень 2010 г. так и не вышла на фоновое значение, наблюдаемое до 2008 года. Для хребта Мона и острова Северо-Восточная Земля наблюдалось минимальное энерговыделение.

	ШЗР + Моллой		хр. Книповича		хр. Мона		CB3		Стур-фьорд		Зюйдкапп	
Год	1	2	1	2	1	2	1	2	1	2	1	2
1999	264.75	20	5444.13	50	8767.01	49	378.51	18	114.00	3	126.74	11
2000	9831.88	31	48270.20	42	1030.27	21	1158.18	28	518.44	6	1727.88	8
2001	18290.28	18	1400.62	45	4508.91	30	356.40	27	2.40	1	734.27	9
2002	2382.82	25	6655.40	66	3234.66	15	5283.62	19	160.23	5	513.00	6
2003	21480.88	23	6460.60	47	558.67	18	68.74	8	660.30	13	839980.44	32
2004	12657.43	22	13638.28	94	2188.25	19	575.16	18	162.29	12	182.06	11
2005	27031.12	34	88585.80	66	10462.54	38	933.67	8	678.76	27	1090.75	25
2006	1594.49	21	7527.31	48	1338.13	19	3809.36	22	377.42	9	19289.33	16
2007	5357.77	15	44502.79	39	4473.18	42	1562.89	14	521.42	12	662.52	10
Среднее за 1999– 2007	10987.94	23.22	24720.57	55.22	4062.40	27.89	1569.61	18.00	355.03	9.78	96034.11	14.22
2008	1206.12	21	1166.10	26	228.16	9	68.40	7	37377643.38	520	1187.00	8

Таблица III.5. Годовые вариации количества землетрясений (2) с ML³2 и сейсмической энергии в МДж (1), выделившейся в сейсмогенных зонах Шпицбергена (рис. III.11) в 1999–2008 гг. (СВЗ – Северо-Восточная Земля). Курсивом выделена минимальная энергия, жирным шрифтом – максимальная

Сейсмичность района архипелага Шпицберген в 2008 г.

На рис. III.13 приведена карта сейсмичности архипелага Шпицберген и прилегающих территорий за 2008 г. по данным КоФ ГС РАН и NORSAR. Каталог 64 землетрясений с $M \ge 2.0 \ (ML \ge 3.0)$, произошедших в 2008 г. в районе Шпицбергена, приведен в разделе V.16. За год в районе архипелага зарегистрировано 576 землетрясений с магнитудой $ML \ge 2.0$, которые приурочены к сейсмогенным зонам архипелага. Аномальность зоны пролива Стур-фьорд обусловлена землетрясением 21.02.2008 г. в $02^{h}46^{m}17.41^{s}$, сильнейшим за всю историю инструментальных наблюдений на шельфовой части архипелага. По оценкам Геологической службы США, землетрясение имело магнитуду ML=6.0 и Mw=6.1. Оценки глубины этого события разнятся от 6 (CSEM – Centre Sismologique Euro-Mediterraneen) до 33 км (NAO – Norwegian Seismic Array).

В 2008 г. землетрясения с магнитудой больше 3 также происходили на хребте Книповича, во впадине Моллой, к северу, северо-востоку от острова Северо-Восточная Земля, к востоку от острова Медвежий.

Макросейсмический эффект землетрясения 21.02.2008 г. в проливе Стур-фьорд

Макросейсмические эффекты от землетрясения 21.02.2008 г. отмечались во всех поселениях южной части острова Западный Шпицберген. По свидетельству директора рудника «Баренцбург» Б.И. Ногаюка, в Баренцбурге землетрясение ощущалось ночью (03^h46^m по местному времени) как дрожание здания, сопровождалось звоном посуды в серванте, падением отдельных бокалов, появились незначительные трещины в стенах кирпичных жилых зданий Консульства (постройка 1983 г.) и отеля «Хилтон», в шахте отмечено шелушение и осыпание кровли выработок, но существенных технических повреждений не зафиксировано. В пос. Пирамида появилась большая трещина в основании здания гаража, вылетели стекла в некоторых домах. Сообщений о повреждениях в норвежском пос. Свеагрува не поступало. О сильной тряске были сообщения из Хорнсунда. Такое описание соответствует по шкале MSK-64 [*Medsedes*, 1968] землетрясению силой в 6–7 баллов.

Рис. III.13. Эпицентры землетрясений с ML³2 в районе архипелага Шпицберген в 2008 г.

Локализация афтершоковой области и выделение последовательности афтершоков землетрясения 21.02.2008 г. с *Мw*=6.1

Для локализации афтершоковой области землетрясения 21.02.2008 г. было отобрано 19 афтершоков с *ML*>3.0 и определены их координаты методом минимизации невязки времени в очаге. В результате афтершоковая область землетрясения 21.02.2008 г. в Стур-фьорде локализована в районе, ограниченном окружностью радиусом 50 *км* (рис. III.14) с координатами эпицентра ϕ =77.1°N и λ =19.5°E [*Баранов и др.*, 2008].

Рис. III.14. Афтершоки с ML³2, произошедшие в исследуемом районе с 21.02. по 10.04.2008 г.

Интенсивность афтершокового процесса, инициированного главным толчком, в первые дни достигала более 950 событий в сутки. Обработку такого объема данных возможно осуществить только посредством автоматизации. Для обнаружения и локации землетрясений в исследуемой области была разработана система автоматического детектирования и локации сейсмических событий (UDL) по данным норвежской сейсмической группы SPI [*Acминг*, *Федоров*, 2010]. Полученный каталог содержит данные о положении эпицентров, времени в очаге и энергетических параметрах 45667 событий с ML=–1.2÷6.0, произошедших в афтершоковой области. Статистические параметры: средняя магнитуда – 0.08, стандартное отклонение – 0.59. На рис. III.15 а приведен график повторяемости обнаруженных афтершоков; зависимость магнитуды от времени показана на рис. III.15 б. Полученный каталог является представительным лишь для ML≥–0.2. Каталог с ML≥–0.2 (29405 событий) использован для анализа пространственновременной структуры афтершоковой серии в проливе Стур-фьорд.

Рис. III.15. Сейсмичность пролива Стур-фьорд за период с 01.01.2008 г. по 10.04.2009 г. по результатам работы программы UDL: а – график повторяемости для событий, произошедших в афтершоковой области, б – зависимость магнитуды от времени

Моделирование афтершокового процесса землетрясения 21.02.2008 г. с *Мw* = 6.1

Общепринятая теория возникновения афтершоков была построена Беньоффом в результате обобщения исследований по механике разрушения [*Benioff*, 1951]. Согласно этой теории, афтершоковый процесс аналогичен процессу образования микротрещин при хрупком разрушении горной породы. По аналогии с теорией трещинообразования выделяется два типа афтершоковых процессов: гиперболический – описывается законом Омори и экспоненциальный – имеет вид закона Майкельсона [*Michelson*, 1917]. В экспериментах по механике разрушений гиперболический тип наблюдается в случае снятия нагрузки после начала процесса трещинообразования. Экспоненциальный тип проявляется, если после начала трещинообразования нагрузка не снимается [*Sholz*, 1968].

В настоящем исследовании в качестве гиперболической модели был использован модифицированный закон Омори [*Utsu*, 1961]:

$$n(t) = K/(t+c)^p,$$
 (1)

где t – время, прошедшее после основного толчка; n(t) – количество афтершоков в единицу времени; K, c, p – положительные параметры модели, которые должны быть определены из данных наблюдений.

Модели афтершоков экспоненциального типа в англоязычной литературе называются Stretched Exponential Models (STREXP). Общий вид STREXP-модели (Modified STREXP) был предложен в [*Kisslinger*, 1993]:

$$n(t) = qN^* \exp\left[\left(\frac{d}{t_0}\right)^q\right] \frac{1}{t+d} \left(\frac{t+d}{t_0}\right)^q \exp\left[-\left(\frac{t+d}{t_0}\right)^q\right],\tag{2}$$

где t – время, прошедшее после основного толчка; n(t) – количество афтершоков в единицу времени; d, t_0 , $q \le 1$, N^* – положительные параметры модели, которые должны быть определены из конкретных данных. Параметр t_0 – время релаксации афтершокового процесса. Параметры c в (1) и d в (2) вводятся для устранения сингулярности при t=0. В [Gross and Kisslinger, 1994] было показано, что модель (2) лучше закона Омори описывает ряд афтершоковых последовательностей южной Калифорнии.

Наиболее общей моделью афтершоковых процессов, построенной в рамках теории Беньоффа, является LPL(Limited Power Low)-модель [*Narteau et al.*, 2002]. Согласно LPL-модели число афтершоков в единицу времени задается соотношением:

$$n(t) = A \times t^{-q} [\gamma(q, \lambda_b t) - \gamma(q, \lambda_a t)],$$
(3)

где t – время, произошедшее после основного толчка; $\gamma(\rho, x)$ – неполная γ -функция; *A*, *q*, λ_a , λ_b – подлежащие определению положительные параметры модели. В отличие от моделей (1) и (2), соотношение (3) получено не эмпирически, а из теоретических соображений. При различных значениях параметров формула (3) описывает как гиперболический, так и экспоненциальный типы афтершоковых последовательностей и переходы между ними [*Narteau et al.*, 2002].

Модели (1)–(3) были использованы как с фоновой сейсмичностью, так и без нее. Включение в модель фоновой сейсмичности заключается в добавлении дополнительного параметра *r* в виде слагаемого.

Общим свойством моделей (1)–(3) является то, что они описывают процессы релаксации напряжений в афтершоковой области и оперируют лишь временами афтершоков, не учитывая их магнитуды. Фактически эти модели фокусируются на временных свойствах афтершоковых последовательностей, предполагая, что они в значительной степени определяются основным толчком. Кроме того, релаксационные модели афтершоковых процессов не описывают случай, когда кумулятивная кривая количества афтершоков (задается интегрированием n(t) по времени) меняет характер вогнутости. Такое свойство наблюдается и у афтершоковой последовательности в Стур-фьорде с $ML \ge -0.2$ в районе 150-го дня после основного толчка (рис. III.16 а). Следовательно, афтершоковый процесс с $ML \ge -0.2$ не может быть описан релаксационными моделями (1)–(3). Обнаруженная особенность приводит к необходимости проводить моделирование афтершоковых последовательностей с $ML \ge -0.2$ и $ML \ge 2.0$. При повышении нижнего порога магнитуд кумулятивная кривая приобретает регулярный вид без изменения характера выпуклости (рис. III.16 б).

Рис. III.16. Кумулятивное количество афтершоков с ML³-0.2 (a) и ML³2.0 (б) в Стур-фьорде за период с 21.02.2008 г. по 10.04.2009 г.

Увеличение плотности сейсмических сетей и чувствительности регистрирующей в последние десятилетия аппаратуры позволило обнаружить более сложные афтершоковые процессы, когда каждое землетрясение в зависимости от магнитуды инициирует собственную афтершоковую последовательность. Пример – серия мелкофокусных землетрясений в Богемии, где тектонические подвижки по разломам вызвали ряд сильных толчков, нарушивших в нижних этажах кристаллического фундамента дренажные системы восходящего потока мантийных флюидов. Последнее привело к изменению локального поля напряжений и проявилось в виде серии слабых землетрясений [Hainzl et al., 2005; Spichak, 2001; Weis et al., 2001].

Такие процессы описываются ETAS (Epidemic Type Aftershock-Sequence)-моделью [Ogata, 1989]:

$$n(t) = \mu + \sum_{t_i < t} \frac{K_i}{(t - t_i + c)^p}, K_i = K_0 \exp[\alpha (M_i - M_0)],$$
(4)

где μ – значение фоновой сейсмической активности (среднее число землетрясений в единицу времени до главного толчка); *с*, *р*, *K*₀, α – подлежащие определению параметры модели, одинаковые для всех событий из каталога; *t*_i – время, *M*_i – магнитуда *i*-го афтершока; *M*₀ – магнитуда, начиная с которой каталог является представительным. Суммирование в (4) выполняется по всем афтершокам, произошедшим до момента времени *t*. В ЕТАS-модели количество афтершоков в момент времени *t* зависит от фоновой сейсмичности и наблюдений в предыдущие моменты времени, которые представлены в виде суперпозиции законов Омори. Величина *K*_i в (4) задает влияние афтершока с магнитудой *M*_i, произошедшего в момент времени *t*_i на порожденную им подподпоследовательность [*Ogata*, 1989]. Поскольку ЕТАS-модель использует полную информацию об афтершоковом процессе (времена и магнитуды) как при оценивании параметров, так и при последующих расчетах, то в статистическом смысле она лучше описывает анализируемую последовательность, чем релаксационные модели (1)–(3).

Оценка параметров и выбор наилучшей модели

Оценка параметров моделей (1)-(4) выполнялась методом максимального правдоподобия [*Daley et al.*, 1972; *Ogata*, 1993]. Выбор наилучшей модели осуществлялся с помощью критериев Акайке (AIC) и Байеса (BIC):

AIC =
$$-2 \max_{\theta} \{\ln L(n(\theta))\} + 2k$$
,
BIC = $-\max_{\theta} \{\ln L(n(\theta))\} + \frac{k}{2} \ln \frac{N}{2\pi}$,

где k – количество параметров модели; N – число событий в каталоге; θ – вектор параметров модели; L – функция правдоподобия; n – модель афтершокового процесса (1)– (4). Эти критерии представляют альтернативные подходы (вероятностный и байесовский) к принятию решения. Лучшая модель имеет меньшие значения AIC и BIC.

Результаты моделирования афтершокового процесса в заливе Стур-фьорд

В табл. III.6 приведены оценки параметров моделей (1)–(4) и значения критериев AIC и BIC. Для афтершоков с $ML \ge -0.2$ оценки параметров релаксационных моделей (1)–(3) слабо согласуются со значениями, полученными для других регионов [*Gross, Kisslinger*, 1994; *Narteau et al.*, 2002]. Причина – изменение выпуклости кумулятивной кривой для афтершоков с $ML \ge -0.2$ (рис. III.16 а). Как и предполагалось, лучшей для этой последовательности является ETAS-модель (4). Получившееся значение фоновой сейсмичности μ составляет 1.58 событий с $ML \ge -0.2$ в сутки (табл. III.6), что соответствует данным сейсмологических наблюдений. Нерегулярный характер кумулятивной кривой и разница в значениях критериев AIC и BIC для релаксационных моделей (1)–(3) и ETAS-модели (4) позволяют сделать вывод, что последовательность афтершоков с $ML \ge -0.2$ имеет триггерную природу. Это означает, что количество событий не определяется одной лишь релаксацией напряжений в зоне разрыва.

Таблица III.6. Результаты оценки моделей (1)–(4) для афтершоков
с ML^3 –0.2 и ML^3 2.0, значения критериев AIC и BIC.

Жирным шрифтом выделены наименьшие значения AIC и BIC, соответствующие лучшей модели

Модель	Параметры	AIC	BIC						
<i>ML</i> ≥-0.2 (29246 афтершоков)									
Омори (1)	K=1047.68 c=0.47 p=0.58	-209955.5	-104968.1						
Омори + фон (1)+ <i>r</i>	<i>K</i> =78069.07 <i>c</i> =9.85 <i>p</i> =1.88 <i>r</i> =43.12	-211940.5	-105957.4						
MSTREXP (2)	$q=0.42 N^*=5235519.9 d=0.459 t_0=140$	-209962.1	-104968.0						
MSTREXP + фон (2)+ r	$q=0.31 N^*=11195.4 d=5.7 t_0=0.85 r=43.71$	-211959.2	-105963.5						
LPL (3)	$A=850.83 \lambda_a=0.001 \lambda_b=2.136 q=0.39$	-207865.0	-103919.6						
LPL + фон (3)+ <i>r</i>	$A=20650 \lambda_a=0.024 \lambda_b=752.96 q=0.013 r=44.83$	-211702.4	-105835.1						
ETAS (4)	μ =1.58 K=0.103 c=0.138 α =0.26 p=2.11	-221204.8	-110586.3						
<i>ML</i> ≥2 (518 афтершоков)									
Омори (1)	K=34.49 c=0.006 p=0.797	-642.6	-317.7						
Омори + фон (1)+ <i>r</i>	<i>K</i> =3.48 <i>c</i> =0.009 <i>p</i> =0.839 <i>r</i> =0.127	-643.6	-318.2						
MSTREXP (2)	$q=0.21 N^*=14868.3 d=0.002 t_0=300$	-649.2	-319.8						
MSTREXP + фон (2)+ r	$q=0.18 N^*=8253.69 d=0.004 t_0=400 r=0.12$	-649.6	-318.8						
LPL (3)	$A=34.66 \lambda_a=0.001 \lambda_b=284.4 q=0.75$	-636.9	-313.6						
LPL + фон (3)+ <i>r</i>	$A=33.25 \lambda_a=0.001 \lambda_b=147.038 q=0.82 r=0.21$	-650.6	-319.2						
ETAS (4)	μ =0.07 K=0.01 c=0.004 α =1.91 p=0.91	-679.8	-333.9						

Для последовательности с $ML \ge 2.0$ оценки параметров моделей (1)–(4) укладываются в диапазоны значений, полученных для других регионов [Gross, Kisslinger, 1994; Narteau et al., 2002]. Как и ожидалось, лучшей для этой последовательности также является ETAS-модель (табл. III.6). Согласно оценкам, значение фоновой сейсмичности μ составляет 0.07 события с $ML \ge 2.0$ в сутки, что согласуется с данными мониторинга. Тем не менее, регулярный характер кумулятивной кривой (рис. III.16 б) позволяет описать данную последовательность и релаксационными моделями.

Согласно критерию AIC, лучшей среди релаксационных моделей для последовательности афтершоков с $ML \ge 2.0$ является LPL-модель с фоновой сейсмичностью. Эта модель описывает как гиперболические, так и экспоненциальные афтершоковые процессы. С точки зрения критерия BIC, лучшей является экспоненциальная модель (2) без фона (табл. III.6). Релаксационные модели (1) и (2) имеют близкие значения критериев AIC и BIC. Этот факт, затрудняющий определение типа афтершокового процесса, отмечался рядом исследователей [*Sholz*, 1968; *Narteau et al.*, 2002]. Поскольку экспоненциальная модель (2) имеет меньшие значения критериев AIC и BIC, мы отнесем последовательность афтершоков с $ML \ge 2.0$ к экспоненциальному типу.

Таким образом, афтершоковый процесс, инициированный землетрясением с Mw=6.1 21.02.2008 г. в Стур-фьорде, является суперпозицией двух подпроцессов (триггерного и релаксационного) и не определяется одной лишь релаксацией напряжений в зоне разрыва. Релаксационный процесс (афтершоки с ML≥2.0) относится к экспоненциальному типу. Следовательно, силы, вызвавшие основной толчок, продолжают действовать, и события с ML≥2.0 будут происходить. Это подтверждается результатами наблюдений – 15.09.2010 г. в Стур-фьорде произошло землетрясение с ML=4.0. Триггерный процесс (афтершоки с ML≥–0.2) описывается ЕТАS-моделью и, скорее всего, связан с изменением флюидо-динамического равновесия морского дна. Афтершоковые серии такой длительности, как в Стур-фьорде, во внутриплитных обстановках достаточно редки. Наиболее изученным примером является рой мелкофокусных землетрясений в Богемии (Чехия), количество которых сопоставимо с рассматриваемым случаем. В 1994 г. здесь было зарегистрировано приблизительно 500 землетрясений с *ML*<2.2 [*Weise et al.*, 2001] в 1997 г. – более чем 1600 землетрясений с магнитудами меньше 3 [*Spichak et al.*, 2001]; в 2000 г. – несколько тысяч землетрясений с магнитудами меньше 3.3 [*Fischer et al.*, 2005].

Гипотеза сейсмичности пролива Стур-фьорд

По аналогии с сейсмичностью Богемии можно предположить, что и в Стурфьорде афтершоки с *ML*<2.0 обусловлены нарушениями флюидного режима в осадочном покрове морского дна. Принятие этой гипотезы позволит предложить следующую модель сейсмичности пролива Стур-фьорд.

Тектоническое землетрясение 21.02.2008 г. с Mw=6.1 имело сдвиго-сбросовый механизм и инициировало в эпицентральной области «встряску» поверхностных слоев морского дна с интенсивностью 9–10 баллов по шкале МСК-64, что привело к нарушению установившегося за годы покоя флюдо-динамического равновесия в осадочной толще морского дна в Стур-фьорде. Далее возможны два варианта развития событий.

Первый вариант аналогичен богемскому: флюиды поднимаются из мантии к поверхности, восстанавливая заново нарушенную дренажную систему за счет изменения локальных полей напряжений. Процесс развивается по механизму самоорганизации и сопровождается формированием на разных глубинах насыщенных флюидами временных резервуаров с аномально повышенным давлением, приводящим к периодическому взламыванию плохо проницаемой кровли в те моменты, когда ее механическая прочность снижается вследствие диффузионной флюидизации. Этот сценарий допускает наличие под афтершоковой областью разрастающегося в мантийном этаже магматического очага с повышенным флюидосодержанием, за счет которого в ближайшем будущем в Стур-фьорде может сформироваться вулканический комплекс, подобный голоценовому вулкану Сверре на северном побережье острова Западный Шпицберген [*Евдокимов*, 2000]. Проверочными критериями для этого предположения могут стать данные о повышенном тепловом потоке в афтершоковом ареале, высокое отношение изотопов He³/He⁴ в газовых струях, прорывающихся сквозь осадочную толщу дна, а также выявление глубинных гипоцентров землетрясений (глубже 30 *км*).

Второй механизм развития афтершоковой серии основан на предположении, что начальный мощный толчок 21.02.2008 г. вызвал разрушение кристаллических структур в слое газовых гидратов, залегающих на шпицбергенском участке шельфа на малых глубинах (порядка 100-300 м от поверхности дна) практически повсеместно. Газогидраты представляют собой хрупкую конструкцию, в которой матрица из игольчатых кристаллов льда как губка насыщена конденсированным метановым флюидом. Устойчива эта матрица в узком диапазоне температур и давлений. Поэтому при самых незначительных изменениях напряженного состояния осадочного покрова или термодинамического поля в придонном слое происходит локальное разрушение газогидратных блоков с увеличением их объема в 160-200 раз и образованием под глинистыми покрышками четвертичных осадков газовых пузырей с аномально высоким давлением [Judd, Hovland, 2007; Дмитриевский, Баланюк, 2009]. При прорыве пузырей и струй к поверхности на дне моря формируются многочисленные покмарки и поля грязевых вулканов, крупнейшие из которых на Шпицбергенско-Медвежьинском сегменте шельфа достигают в поперечнике 1 км [Forwick et al., 2009]. Логично предположить, что в эпицентральной области Стур-фьордского землетрясения массовое разрушение кристаллического скелета газогидратов должно было охватить всю эпицентральную область. В этом случае процесс разгрузки метана, высвобождаемого из газогидратов в виде газовой фазы, также должен развиваться по механизму самоорганизации, поскольку при прекращении механического воздействия в тех участках дна, где параметры температуры и давления не выходят за пределы поля устойчивости газогидратов, должна вновь начаться кристаллизация водно-метановой твердой фазы. Процесс может повторяться многократно в пульсирующем ритме: разрушение газогидратного блока вследствие тектонического землетрясения – формирование газового пузыря – прорыв газа к поверхности с образованием грифонов и грязевых вулканов – залечивание канала новообразованной газогидратной пробкой и новый цикл с уменьшающейся интенсивностью под воздействием очередного землетрясения тектонической природы. В отличие от первого сценария, в этом варианте будут доминировать мелкофокусные землетрясения, в газовых выбросах захваченный из осадков гелий будет иметь «радиогенную» изотопную метку, а над самозакупоривающимися каналами будут возникать временные отрицательные аномалии теплового потока вследствие эндотермичности процесса кристаллизации газогидратов.

Приведенные два варианта развития афтершокового процесса в проливе Стурфьорд не являются взаимоисключающими. Повышенный тепловой поток в афтершоковой области также способен инициировать разрушение слоя газогидратов и фактически привести ко второму сценарию. Косвенным подтверждением комбинации этих двух сценариев являются данные об аномальном тепловом потоке, наблюдаемом в северной части Свальбардской плиты на расстоянии около 300 км от Стур-фьорда, представленные в работе коллектива авторов [*Хуторской и др.*, 2009].

Заключение

В работе рассмотрена сейсмичность района архипелага Шпицберген в 2008 г., приведен каталог землетрясений с $ML \ge 3$, отмечено значительное повышение энерговыделения в сейсмогенной зоне Стур-фьорд, обусловленное сильнейшим за всю историю инструментальных наблюдений на шельфе Шпицбергена землетрясением 28.02.2008 г. с Mw=6.1. В результате моделирования афтершокового процесса, порожденного этим землетрясением, было установлено, что процесс является суперпозицией двух подпроцессов (релаксационного и триггерного). Релаксационный процесс – афтершоки с $ML \ge 2.0$ – относится к экспоненциальному типу, следовательно, события с такими магнитудами будут и далее происходить в этой сейсмогенной зоне. Триггерный процесс включает слабые события с $ML \ge -0.2$ и описывается ETAS-моделью.

Выдвинута гипотеза, что сейсмичность пролива Стур-фьорд обусловлена нарушением флюидо-динамического равновесия в осадочной толще морского дна. В рамках этой гипотезы предложены две возможных модели сейсмичности Стур-фьорда и указаны критерии для их проверки.

Афтершоковый ареал Стур-фьордского землетрясения 2008 г. заслуживает дальнейшего комплексного исследования, которое даст возможность верифицировать предложенные модели и тем самым пролить свет на характер современных процессов деструкции континентальной коры на границе Карско-Баренцевоморской платформы с областью молодого океанообразования в Норвежско-Гренландском и Евразийском бассейнах.