II.3. Сейсмический мониторинг в эпицентральной зоне Чуйского землетрясения (Алтай)

II.3.1. Сейсмический мониторинг Алтае-Саянской горной области Алтае-Саянским филиалом ГС РАН

А.Ф. Еманов, А.А. Еманов, Е.В. Лескова, Ю.И. Колесников, А.В. Фатеев, А.Ю. Сёмин

Детальные исследования сейсмичности в Алтае-Саянском регионе начались в 1999 г. и были связаны с формированием Алтайского сейсмологического полигона [Землетрясения Северной Евразии в 1999 г., 2005]. Для развертывания локальной сети полигона первоочередным объектом была выбрана Чуйско-Курайская зона Алтая. В дальнейшем выбор района исследования временными сетями станций определялся особенностями сейсмического режима Алтая. Детальнее всего исследовалась зона сильнейшего Чуйского землетрясения, произошедшего в сентябре 2003 г., афтершоковый процесс которого продолжается и до настоящего времени. Результаты детальных наблюдений в этом районе опубликованы в многочисленных работах авторов [Гольдин С.В., 2003; Еманов А.Ф. и др, 2004; Еманов А.А. и Лескова Е.В., 2006].

В настоящем разделе приводятся сведения о станциях, входящих во временные сети наблюдений, и каталоги наиболее точно локализованных землетрясений в соответствии с периодами временных наблюдений. При обработке детальных наблюдений использовалась методика, основанная на современных алгоритмах, позволяющих получить более точную информацию о характеристиках землетрясений. Так, для событий, зарегистрированных временными сетями в районе Чуйского землетрясения, пригипоцентральные решения, полученные пакетом HYPOINVERSE2000 [Fred W. Klein, 2002]. Результаты, опубликованные в данной работе, следует рассматривать как фрагментарное по площади уточнение и дополнение каталогов, представленных по региону в целом. В сводной обработке привлекались данные стационарных станций Алтайского полигона: «Акташ», «Улаган», «Ташанта» и «Чаган-Узун» (см. подраздел І.5.), а начиная с октября 2003 г. также «Джазатор» и «Солонешинская».

В 2003 г. локальные сети станций разворачивались дважды (табл. 20):

- 1) с 10 августа по 11 сентября сеть временных станций была ориентирована на изучение землетрясений малых энергий в окрестности Курайской впадины. Наблюдения организованы в период затишья перед Чуйским землетрясением, основной толчок которого произошел 27 сентября 2003 г. в $11^{\rm h}$ 33^m и имел магнитуду M=7.3 [Землетрясения России в 2003 году, 2006];
- 2) с 4 по 25 октября, спустя неделю после основного толчка Чуйского землетрясения в период широко развитого афтершокового процесса, в его эпицентральной зоне.

В первый период наблюдений наиболее хорошо локализовано 74 гипоцентра землетрясений с энергетическим классом K=1.0–5.9 и глубинами H=2–20 κm ; во второй период — 191 гипоцентр землетрясений с энергетическим классом K=5.5–12.6 и глубинами H=1–18 κm .

Таблица 20. Сведения о сейсмических станциях временных локальных сетей Алтае-Саянского филиала ГС СО РАН в 2003 г.

Код станции	Широта, °N	Долгота, °Е	Высота над уровнем моря, <i>м</i>	Период работы в 2003 г.			
CHB*	50.313	87.503	1164	август-сентябрь	октябрь		
KUR	50.233	87.944	1534	август-сентябрь			
M23	50.318	87.725	2236	август-сентябрь	октябрь		
NKUR	50.253	87.894	1587	август-сентябрь			
PERM	50.468	87.559	2007	август-сентябрь			
PRM4	50.470	87.561	2005	август-сентябрь			
PRM5	50.466	87.560	2004	август-сентябрь			
PRM6	50.468	87.555	2011	август-сентябрь			
ARGT	49.887	87.191	1376		октябрь		
ARW1T	49.961	88.009	2042		октябрь		
ARW2T	49.960	88.023	2024		октябрь		
ARW4T	49.959	88.051	2057		октябрь		
ATR1T	50.158	87.823	1706		октябрь		
ATR2T	50.160	87.820	1690		октябрь		
ATR3T	50.162	87.817	1679		октябрь		
ATR5T	50.153	87.814	1712		октябрь		
ATRA2	50.161	87.853	1612		октябрь		
ATRA3	50.144	87.846	1648		октябрь		
ATRB1	50.159	87.839	1660		октябрь		
ATRB2	50.152	87.849	1625		октябрь		
ATRB3	50.150	87.836	1651		октябрь		
ATRC	50.154	87.841	1627		октябрь		
ATRD1	50.157	87.847	1620		октябрь		
ATRD2	50.149	87.843	1641		октябрь		
ATRT	50.156	87.826	1704		октябрь		
BL1T	49.958	88.083	2100		октябрь		
BLTT	49.960	88.069	2070		октябрь		
ELGT	49.677	88.215	2240		октябрь		

^{*} на станции СНВ («Чибит») с октября 2003 г. осуществляется непрерывная регистрация.

На рис. 38 представлены карты эпицентров землетрясений за период августсентябрь 2003 г. Слабые по энергии сейсмические события происходили в горном обрамлении Курайской впадины и образовывали линейные цепочки, пересекающие впадину. На рис. 39 отчетливо видно существование двух фаз развития афтершокового процесса в октябре 2003 г. Главный толчок Чуйского землетрясения приурочен к границе Чаган-Узунского блока с Северо-Чуйским хребтом. Первая фаза афтершокового процесса приурочена к границам Чаган-Узунского блока. Вторая фаза — это развитие процесса вдоль линейной зоны по западным бортам Чуйской и Курайской впадин, вдоль Северо-Чуйского и Южно-Чуйского хребтов.

Сеть станций, развернутая Алтае-Саянским филиалом ГС СО РАН в июле и октябре 2004 г. в афтершоковой области Чуйского землетрясения, существенно дополняет сеть стационарных станций в этом регионе. Фактически сеть станций наиболее плотная в Курайской впадине и вокруг Чаган-Узунского блока. Остальные станции создают несколько разреженное окружение детально исследуемой области (табл. 21, рис. 40, 41).

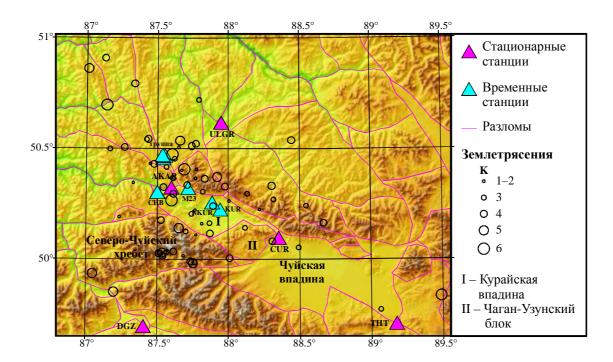


Рис. 38. Сеть сейсмических станций и эпицентры афтершоков Чуйского землетрясения в период 10 августа — 11 сентября 2003 г. ГРУППА — группа временных станций (PRM4, PRM5, PRM6, PERM). Здесь и далее на рисунках показаны глубинные разломы [Новиков, 2004]

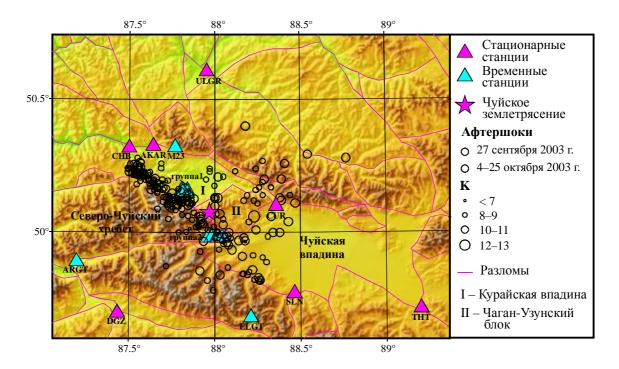


Рис. 39. Сеть сейсмических станций и эпицентры афтершоков Чуйского землетрясения в период 3–30 октября 2003 г. (выборочная обработка), эпицентр Чуйского землетрясения и некоторые его афтершоки 27 сентября 2003 г. ГРУППА1 — группа временных станций в Курайской впадине (ATRT, ATR1T, ATR2T, ATR3T, ATR5T, ATRA2, ATRA3, ATRB1, ATRB2, ATRB3, ATRC, ATRD1, ATRD2); ГРУППА2 — группа временных станций в районе поселка Бельтир (ARW1T, ARW2T, ARW4T, BL1T, BLTT)

Таблица 21. Сведения о сейсмических станциях временных локальных сетей Алтае-Саянского филиала ГС СО РАН в 2004 г.

Код станции	Широта, °N	Долгота, °Е	Высота над уровнем моря, м	Период работы в 2004 г.	
ADJT	50.173	88.074	1660	июль	
AKTR	50.145	87.811	1782	июль	
ARW1T	49.961	88.009	2042	июль	октябрь
ATRT	50.156	87.826	1704	июль	
BLT	49.972	88.160	1951	июль	октябрь
ELGT	49.677	88.215	2240	июль	октябрь
KOK	49.917	88.997	1876	июль	октябрь
K-YT	50.088	87.954	2063	июль	
M23	50.318	87.725	2236	июль	
MTF	50.185	87.922	1532	июль	октябрь
MTS	50.205	87.965	1515	июль	октябрь
NKUR	50.253	87.894	1587	июль	октябрь
OTL	50.034	88.495	1761	июль	октябрь
PASP	50.839	87.886	1469	июль	октябрь
SAR	50.525	88.265	1426	июль	октябрь
TALD	49.965	87.922	2127	июль	
TMEN	50.250	87.652	1467	июль	октябрь
TYTO	50.120	87.922	1769	июль	
ELAN	49.830	88.044	2478		октябрь
ELIV	49.919	88.212	2200		октябрь
IRB	49.808	88.174	2393		октябрь
IRB1	49.872	88.327	2088		октябрь
IVER	49.917	88.133	2399		октябрь
MTRT	49.990	88.533	1760		октябрь
OTL	50.034	88.495	1761		октябрь
OZEK	49.820	88.259	2277		октябрь
SRKB	49.841	88.151	2565		октябрь
TMEN	50.250	87.652	1467		октябрь
TRXT	49.930	88.354	1949		октябрь
YNKL	49.890	88.090	2534		октябрь

В 2003 г. северо-западное окончание афтершоковой области отмечалось в виде ограничения, не доходя до станции Чибит (рис. 39). Наблюдательный эксперимент в июле 2004 г. (рис. 40) обнаруживает удлинение афтершоковой области за пределы Курайской впадины к северу. Юго-восточное окончание афтершоковой области выглядит как магистральная цепочка событий с серией оперений в пределах Чуйской впадины. Были обнаружены участок афтершокового процесса с аномально малыми глубинами событий до 2 км и группа событий внутри Северо-Чуйского хребта. От афтершоковой области эта группа событий отделена превышающим 4000 м над уровнем моря массивом вершины Актру.

В октябре 2004 г. сеть временных станций была сориентирована на детальное изучение юго-восточного окончания афтершоковой области (рис. 41). Наибольшее число временных станций было установлено в юго-западном углу Чуйской впадины.

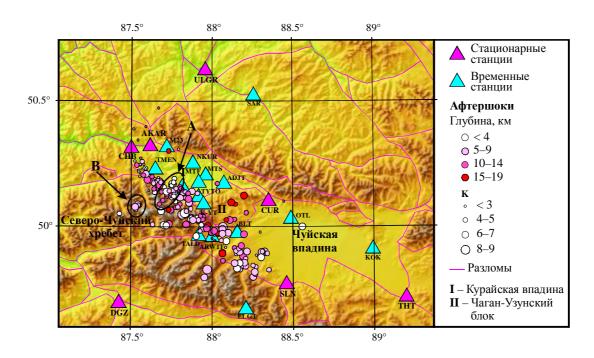


Рис. 40. Сеть сейсмических станций и эпицентры афтершоков Чуйского землетрясения в период 3—19 июля 2004 г. (выборочная обработка). А—группа мелкофокусных событий; В—группа событий внутри Северо-Чуйского хребта

Целью этих работ было исследование структуры афтершокового процесса в Чуйской впадине. Фиксировавшаяся ранее разветвленность в пространстве афтершоков в Чуйской впадине требовала проверки на более высоком уровне точности. На рис. 41 представлена карта эпицентров афтершоков за октябрь 2004 г.

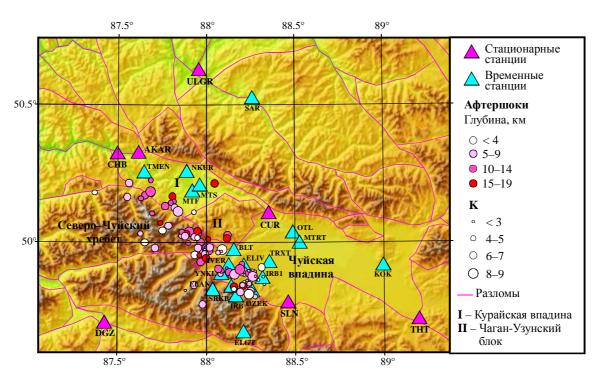


Рис. 41. Сеть сейсмических станций и эпицентры афтершоков Чуйского землетрясения в период 19 октября – 10 ноября 2004 г. (выборочная обработка)

- В 2005 г. временные локальные сети станций на Алтае были выставлены дважды:
- 1) в июне локальная сеть, состоящая из 20 станций, разворачивалась в зоне афтершокового процесса Чуйского землетрясения (табл. 22, рис. 42);
- 2) в октябре локальная сеть, состоящая из 30 пунктов наблюдений, была выставлена в Монгольском Алтае (табл. 22).

Таблица 22. Сведения о сейсмических станциях временных локальных сетей Алтае-Саянского филиала ГС СО РАН в 2005 г.

Код станции	Широта, °N	Долгота, °Е	Высота над уровнем моря, м	Период работы в 2005 г.	
BLT	49.972	88.160	1951	Июнь	Октябрь
OTL	50.034	88.495	1761	Июнь	Октябрь
PASP	50.839	87.886	1469	Июнь	Октябрь
ATRT	50.156	87.826	1704	Июнь	ОКІЛОРЫ
CHUY	50.245	87.799	1643	Июнь	
DJAN	50.181	87.739	1775	Июнь	
ERBL	50.368	87.288	1130	Июнь	
FRM	50.161	87.899	1554	Июнь	
KORU	50.186	87.787	1783	Июнь	
LETN	50.128	87.905	1717	Июнь	
NKUR	50.253	87.894	1587	Июнь	
PLT	50.150	87.993	1701	Июнь	
RKUR	50.281	87.949	1803	Июнь	
SALG	50.197	87.746	1827	Июнь	
STN	50.147	87.935	1672	Июнь	
TCHI	50.135	87.862	1642	Июнь	
TITU	50.200	88.164	1817	Июнь	
TMEN	50.250	87.652	1467	Июнь	
TYTO1	50.102	87.940	1949	Июнь	
UZUN	50.478	87.630	2014	Июнь	
ADAG	49.213	89.308	2150		Октябрь
AGDB	48.856	89.311	2330		Октябрь
AKSH	48.717	88.858	_		Октябрь
AKSI	48.751	88.938	_		Октябрь
BAGA	48.611	89.543	2322		Октябрь
BDZU	48.674	88.674	2197		Октябрь
BILU	49.104	89.450	1863		Октябрь
BORUS	48.806	88.967	1979		Октябрь
CAGAN	48.969	88.946	2064		Октябрь
CGHU	48.870	89.433	2117		Октябрь
CGOD	49.025	89.265	2116		Октябрь
CRGL	48.589	88.467	2141		Октябрь
DUMDA	48.817	89.172	2191		Октябрь
H2440	48.760	89.089	2295		Октябрь
HRN	48.619	88.967	2511		Октябрь
HUND	48.652	89.534	1993		Октябрь
KBAS	48.906	89.102	1914		Октябрь
KBDG	48.862	89.009	1967		Октябрь
NURD	48.702	89.508	2004		Октябрь
SHAR	49.012	89.150	1880		Октябрь
SOGO	49.255	89.072	1969		Октябрь
SOL	48.712	89.032	2341		Октябрь

Код станции	Широта, °N	Долгота, °Е	Высота над уровнем моря, <i>м</i>	Период работы в 2005 г.	
TSAGN	48.835	89.604	1875		Октябрь
URDUM	48.873	88.707	2378		Октябрь
UTOSH	48.775	89.497	1966		Октябрь
VITU	48.941	89.467	1828		Октябрь
XOTON	48.930	88.718	2415		Октябрь

В первый период наибольшее количество временных станций было выставлено в районе Курайской впадины. Наибольшая плотность временной сети соответствует двум участкам: первый участок — юго-западный угол Курайской впадины, второй — центральная часть юго-западного борта впадины. Первый участок отмечался механизмами очагов афтершоков. Второй участок был выделен ранее как зона мелкофокусных землетрясений. За время полевых работ в этом районе было зарегистрировано 150 землетрясений с K_P от 0.6 до 8.4. Карта эпицентров землетрясений, произошедших за время эксперимента с локальной сетью, представлена на рис. 42. В этот период основная масса землетрясений происходила в Северо-Чуйском хребте и в юго-западном углу Курайской впадины. В электронном варианте каталога представлены параметры 150 землетрясений, в печатном варианте (раздел IV) опубликованы параметры 62 из них, для которых оценены энергетические классы и магнитуды. Магнитуды этих событий лежат в интервале M=-1.9-2.4.

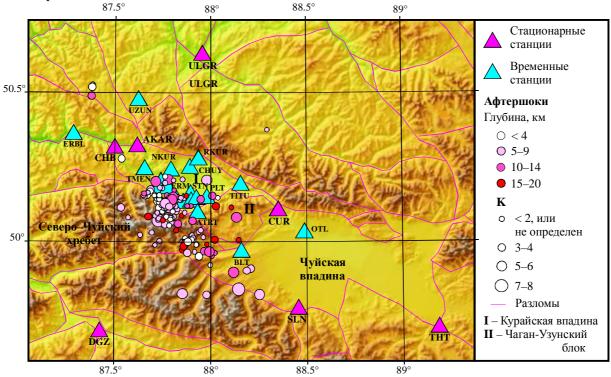


Рис. 42. Сеть сейсмических станций и эпицентры афтершоков Чуйского землетрясения в период 15–25 июня 2005 г. (выборочная обработка)

Исследование афтершокового процесса Чуйского землетрясения еще не завершено по причине большого объема информации и потому, что процесс продолжается. Тем не менее использование уникальных по точности данных позволило провести обработку с использованием уточненных скоростной модели и положения координат гипоцентров. Для изучения структуры афтершокового процесса не ставилась задача анализировать все данные. Рассматривались события, для которых ошибка гипоцентра составляла не более 1 км. Глубины очагов этих событий располагались от 5 до 20 км.

Во второй период, со 2 по 14 октября, было выставлено 30 пунктов наблюдений в Алтае и Монгольском Алтае (табл. 22, рис. 43).

Изучение скоростной модели в районе Южно-Чуйского хребта и плато Укок со стороны России оказалось непростой задачей из-за труднодоступности высокогорной территории. Размещение станций с юга (в Монголии) от афтершоковой области обеспечивает хорошее просвечивание сейсмическими волнами труднодоступных горных структур. Дополнительно данная сеть станций позволяет оценить уровень сейсмичности на территории Монголии, плохо обеспеченной сейсмическими станциями в период афтершокового процесса.

За указанный период времени было зарегистрировано 116 землетрясений с $K_{\rm P}$ от 1.1 до 11.5. Карта эпицентров зарегистрированных событий представлена на рис. 43. Наиболее сильные землетрясения в данный период произошли в горном обрамлении впадин Тувинской котловины. Землетрясения малых энергий ($K_{\rm P}$ =4.3–8.3) происходили на территории Монгольского Алтая

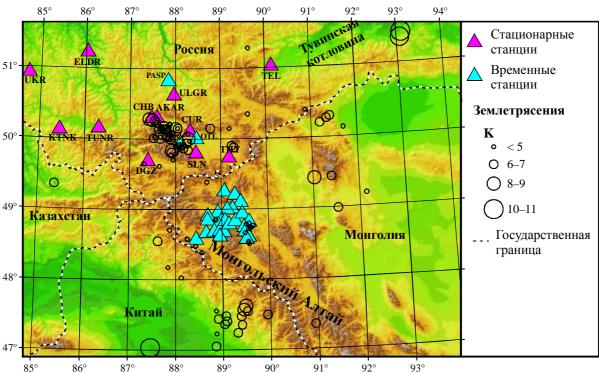


Рис. 43. Сеть временных станций на территории Монголии и эпицентры сейсмических событий в период 2–14 октября 2005 г. (неполная обработка)