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Аннотация. Известно, что образование трещин в объекте меняет его частоты собственных колеба-
ний. Именно это свойство используют продавцы хрустальных бокалов, когда постукивают по ним, 
чтобы убедиться в их целостности. В ФИЦ ЕГС РАН изучением собственных частот Саяно-
Шушенской ГЭС (СШ ГЭС) занимаются с 90-х годов прошлого столетия. За это время непо-
средственно на самой плотине методом стоячих волн определено более 15 форм её собственных 
колебаний при различных уровнях наполнения водохранилища. Установлено, что частоты первых 
семи из этих мод колебаний хорошо регистрируются на расстоянии 4.5 км от плотины на сейс-
мостанции «Черёмушки». Здесь же регистрируются и частоты от работающего на ГЭС обору-
дования с высокой степенью добротности. В то же время у частот собственных колебаний пло-
тины добротность значительно ниже, а также прослеживаются изменения их величин во времени. 
Одновременная регистрация этих сигналов позволяет исключить погрешности измерений, свя-
занные с нестабильностью работы регистрирующих станций. В данной работе сделана попытка 
выяснить, возможно ли по вариациям собственных частот плотины СШ ГЭС обнаружить обра-
зование в ней трещин. Для этого изучались как микросейсмические данные со специально уста-
новленной станции «Филиал» и сейсмостанции «Черёмушки», так и результаты работ, полученные 
сотрудниками СШ ГЭС в теле плотины при изучении её напряжённого состояния. Установлено, 
что на изменения частот собственных колебаний могут оказывать влияние множество факторов, 
таких как уровень водохранилища, температура, намерзание льда и ряд других. Продемонстриро-
вано, что при предельных уровнях наполнения водохранилища происходят сдвиги частоты соб-
ственных колебаний плотины, которые можно связать с дефектами в плотине, раскрывающимися 
при возникающем значительном гидростатическом давлении. Рассматриваемый метод показал 
хороший потенциал для выявления нарушений.
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торинг, уровень водохранилища, трещинообразование.
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Введение

Диагностика структурной целостности гидро-
технических сооружений играет важную роль 
в поддержании их функциональности, осо-
бенно в условиях прогрессирующего старения 
конструкционных материалов. Подавляющая 
доля объектов критически значимой инфра-
структуры по всему миру выполнена из арми-
рованного бетона, чей расчётный срок эксплуа-
тации составляет 50–75 лет. В настоящее время 

они уже начинают достигать конца своего срока 
службы [Sanchez, 2024]. При этом не следует упу-
скать из виду, что разрушение плотин влечёт 
катастрофические экономические и экологиче-
ские последствия, включая миллиардные убытки 
от разрушения инфраструктуры, потерь сельско-
хозяйственных угодий и остановки предприятий, 
а также значительные затраты на их восстанов-
ление и переселение жителей. Помимо сказан-
ного, происходит загрязнение водоёмов, уничто-
жение экосистем, эрозия почв с долгосрочными
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последствиями для региона. Эти риски подчёр-
кивают серьёзность своевременного монито-
ринга состояния плотин для предотвращения 
аварий.

Традиционно для выявления структурных 
нарушений применяются методы визуального 
осмотра. В настоящее время с этой же целью 
используются и беспилотные летательные аппа-
раты (БПЛА) [Ge et al., 2021], способные выя-
вить и даже определить местоположение нару-
шения [Choi et al., 2021]. Однако при условии 
отсутствия непосредственного доступа к изучае-
мому объекту, тем более, если сооружение явля-
ется стратегически важным, возникает необхо-
димость использования дистанционных методов 
исследования. К числу таких методов относится 
спутниковое радиолокационное интерферо-
метрическое зондирование, которое довольно 
точно может отслеживать перемещения плотин 
[Mazzanti et al., 2016; Milillo et al., 2016], а также 
наземное радарное сканирование [Pieraccini, 
Miccinesi, 2019; Huang et al., 2020]. Тем не менее, 
существует вероятность, что повреждения могут 
остаться незамеченными, к тому же такие под-
ходы обладают существенными ограничениями, 
особенно в аспекте выявления скрытых дефек-
тов. Кроме того, значительные габариты кон-
струкции усложняют процесс обследования, 
что обусловливает необходимость комплекс-
ного подхода. Достаточно перспективным и эко-
номичным является метод, основанный на ана-
лизе динамических характеристик конструкции 
[Селезнев и др., 2012], который можно исполь-
зовать для диагностики изучаемого строения 
с помощью анализа данных, полученных на сейс-
мостанциях, находящихся даже на расстоянии 
нескольких километров от объекта исследования 
[Коковкин и др., 2021]. Здесь основная идея диа-
гностики структурных нарушений заключается 
в том, что дефекты изменяют физические пара-
метры конструкции, что, в свою очередь, вли-
яет на её частоты собственных колебаний, воз-
буждаемые естественными и техногенными фак-
торами. Таким образом, повреждение можно 
выявить, анализируя вариации значений соб-
ственных частот во времени, где аномальное 
отклонение частоты от своих средних значений 
будет являться индикатором проявления нару-
шений в объекте.

Теория и методы

Настоящая работа посвящена анализу изме-
нений значений частот собственных колеба-
ний крупных гидротехнических сооружений. 

Методика исследования основана на преоб-
разовании сейсмических записей, зарегистри-
рованных на некотором расстоянии от объ-
екта исследования, в спектрограммы согласно 
[Селезнев и др., 2012]. Обработка регистрируе-
мых данных включает сегментирование сейс-
мической записи по времени с последующим 
расчётом спектра каждого участка. Получен-
ные спектры с заданным временным сдви-
гом упорядочиваются в виде спектрограммы, 
на которой визуализируются монохрома-
тические колебания с различной добротно-
стью, отражающей ширину резонансного пика 
на соответствующей частоте. Пример получае-
мой спектрограммы показан на рис. 1. Данный 
подход позволяет идентифицировать как соб-
ственные частоты колебаний зданий и соору-
жений, так и сигналы от работающего обору-
дования и иных вибрационных источников. 
Разрешающая способность метода по частоте 
напрямую зависит от длительности анализиру-
емого отрезка сейсмограммы.

Объектом текущего исследования является 
Саяно-Шушенская ГЭС, крупнейшая гидроэ-
лектростанция России, расположенная на реке 
Енисей, на границе Республики Хакасии и Крас-
ноярского края. Критическая важность объ-
екта требует его постоянного контроля, поэтому 
с целью отслеживания изменений частот соб-
ственных колебаний плотины СШ ГЭС с мая 
2024 г. в 3 км от плотины была установлена трёх-
компонентная сейсмическая станция «Филиал» 
(ориентация осей датчика: N – север, E – вос-
ток, Z – вертикаль). Сейсмические записи, заре-
гистрированные станцией, передаются по сети 
Интернет на сервер, где создана база данных 
за два года наблюдений.

На начальном этапе исследования требуется 
идентифицировать частоты собственных коле-
баний изучаемого инженерного сооружения. Это 
необходимо для того, чтобы отличить их от воз-
можных монохроматических помех. Для Саяно-
Шушенской гидроэлектростанции частоты соб-
ственных колебаний уже были установлены 
ранее [Еманов и др., 2003; Kuz’menko, Saburov, 
2016] непосредственно в теле плотины с исполь-
зованием метода стоячих волн [Селезнев и др., 
1999]. Это значительно упрощает задачу их опре-
деления в рамках текущей работы. Указанные 
динамические характеристики СШ ГЭС реги-
стрировались сейсмической станцией «Черё-
мушки», расположенной на расстоянии 4.5 км 
от плотины, где достаточно точно можно опре-
делять частоты с 1-й по 7-ю моду колебаний ГЭС 
[Лисейкин и др., 2023] (рис. 2).
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Рис. 1. Текущий спектр сейсмической записи, полученной за день до аварии на СШ ГЭС.

Цифрами обозначены частоты собственных колебаний плотины.  
Отмечена оборотная частота работы турбогенератора и её гармоника

Рис. 2. Схема расположения измерительных станций

На основе получаемых данных производится 
построение текущих спектров с помощью окон-
ного преобразования Фурье с длиной окна 200 с, 
которое обеспечивает наилучшую визуализацию. 
Точность определения частоты с таким выбором 
окна составляет 0.005 Гц.

В дальнейшем осуществляется отслежива-
ние изменений частот собственных колебаний 
СШ ГЭС в длительном временном масштабе. 
По спектру записи видно, что частота 4-й моды 
колебаний плотины достаточно хорошо опреде-
ляется и прослеживается во времени, поэтому 
далее будем изучать именно её изменения.

Исследованию динамических характеристик 
плотин посвящено не так много статей, в отли-
чии от работ по изучению мостов. Отмечается, 
что для уверенного обнаружения повреждения 

моста необходимо, чтобы собственная частота 
изменилась примерно на 5%. Однако значитель-
ные изменения частоты сами по себе не озна-
чают наличие повреждения, поскольку сдвиги 
частоты (более 5%) наблюдались из-за измене-
ний условий окружающей среды как для бетон-
ных, так и для стальных мостов [Salawu, 1997]. 
Таким образом, одного лишь сдвига собственных 
частот может не хватить для контроля целост-
ности, если только повреждение не находится 
в важном несущем элементе. В работе [Han et al., 
2021] также отмечается, что условия окружаю-
щей среды и эксплуатации неизбежно влияют 
на поведение конструкции.

Кроме того, многие исследователи отмечают 
существенное влияние степени заполненности 
водохранилища на величину частот собственных
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колебаний плотины. Данное наблюдение 
также было продемонстрировано и посред-
ством математического моделирования в работе 
[Shariatmadar, Mirhaj, 2011]. Схожие результаты 
получены и другими авторами, которые провели 
экспериментальные исследования на лаборатор-
ной модели плотины в сочетании с численным 
моделированием [Sevim et al., 2011]. Ими пока-
зано, что повышение уровня воды приводит 
к снижению собственных частот, что логично 
обосновывается увеличением присоединённой 
массы. Вместе с тем, уменьшается и количество 
мод колебаний по сравнению с условиями неза-
полненного водохранилища.

В статье [Hsu et al., 2020] с помощью мате-
матического моделирования показаны примеры 
расчёта изменений собственных частот плотины 
СШ ГЭС при возникновении дефектов в её кон-
струкции. Величина этих изменений может 
составлять порядка нескольких сотых долей Гц, 
что является довольно малым значением. Если 
учесть, что рассматриваемая система, объеди-
няющая совокупность сооружений, не является 
изолированной, то на значения частот собствен-
ных колебаний плотины могут оказывать воздей-
ствие и другие внешние факторы, такие как тем-
пературные колебания.

На рис. 3 представлена зависимость частоты 
4-й моды собственных колебаний плотины 
Саяно-Шушенской ГЭС от величины, обрат-
ной уровню наполнения водохранилища, 
и температуры окружающей среды в период 
с 2022 по 2024 год. Данные за 2022–2023 гг. полу-
чены с сейсмической станции «Черёмушки», 
а с 2024 г. – со станции «Филиал». Поскольку 

собственная частота обратно пропорциональна 
уровню воды в водохранилище, для наглядности 
анализа используется величина, противополож-
ная уровню наполнения.

На графике наблюдается чёткая зависи-
мость частоты 4-й моды колебаний от обрат-
ного уровня воды. Видно, что в маловодный 
период, такой как 2022 г., когда приточность 
реки была снижена, значения частот колеба-
ний оказываются выше, чем в последующие 
годы за тот же период. Здесь нужно понимать, 
что максимальный уровень наполнения водо-
хранилища соответствует минимальным значе-
ниям частоты собственных колебаний плотины. 
При его предельном наполнении возможно рас-
крытие имеющихся нарушений из-за возника-
ющей нагрузки. О наличии трещин в плотине 
известно с начала её эксплуатации, их заливка 
полимерными смолами производилась в 1996 г. 
[Брызгалов, 1999], но нужно учесть, что срок 
службы таких составов ограничен.

Что касается влияния температурного 
фактора на собственные частоты плотины, 
то здесь не всё так очевидно. Ранее в рабо-
тах для 14-этажного кирпичного дома [Селез-
нев и др., 2024] и 22-этажного железобетон-
ного дома [Yuen, Kuok, 2010] замечено увели-
чение значений частот собственных колебаний 
с ростом температуры и наоборот. Схожая кар-
тина зависимости частот от температуры про-
слеживается и для бетонной  плотины в работе 
[Oliveira et al., 2024], где авторы фиксируют уве-
личение собственных частот в тёплый период, 
объясняя это смыканием вертикальных швов, 
приводящим к общему увеличению жёсткости,

Рис. 3. График корреляции частоты собственных колебаний плотины на примере 4-й моды  
(фиолетовый цвет) с обратным уровнем водохранилища (зелёный цвет)  

и температурой (оранжевый цвет), по данным за 2022–2024 гг., E-компонента
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а похолодание вызывает противоположный 
эффект. Но в ряде работ, исследующих мосты 
[Desjardins et al., 2006; Liu, DeWolf, 2007; Moaveni, 
Behmanesh, 2012], отмечается обратный эффект, 
где частоты возрастают с понижением темпера-
туры и падают с повышением. Такой же эффект 
наблюдается для каменных строений [Kita et al., 
2019], а также для 6-этажного деревянного дома 
[Alarcón et al., 2023], где более высокие частоты 
отмечаются в условиях повышенной влажно-
сти и низкой температуры, что может быть свя-
зано с уплотнением деревянных соединений 
из-за разбухания древесины. В нашем же слу-
чае не прослеживается такой чёткой зависимо-
сти, ведь плотина массивнее всех рассматрива-
емых выше строений. Поэтому однозначного 
влияния температуры на частоты на всём протя-
жении исследуемого периода увидеть довольно 
сложно, отдельные пики на графике темпера-
туры могут соответствовать пикам на графике 
частоты, но таким же образом можно увидеть 
и обратную корреляцию. Сравнивая данные, 
также нужно учесть, что измерения взяты с мете-
останции, расположенной в нескольких киломе-
трах от плотины, а не непосредственно на ней, 
что также может вносить ошибку.

Но главным вопросом является возможность 
по текущим значениям частоты выявлять нали-
чие трещин, раскрывающихся под воздействием 

гидростатического давления. В работе [Зюзина 
и др., 2025] говорится, что в 2017 г., когда уровень 
наполнения водохранилища достиг своего мак-
симального уровня впервые с 2006 г., произошёл 
существенный рост деформаций, что повлекло 
за собой раскрытие трещин в нескольких сек-
циях. При сбросе воды деформации прекрати-
лись. Сравнение графика деформации в 2017 г. 
для 31-й секции [Зюзина и др., 2025] с графи-
ком изменения частоты собственных колебаний 
плотины (по данным со станции «Черёмушки») 
путём наложения их друг на друга демонстриру-
ется на рис. 4. Графики деформаций по другим 
секциям имеют схожий вид.

На рис. 4а видно, что в 2017 г., когда дефор-
мации достигли наибольших значений, наблю-
дается небольшой пик в несколько сотых Гц.  
Он также соответствует скачку частоты 4-й моды 
собственных колебаний плотины, что согласу-
ется с теорией раскрытия трещины при предель-
ных уровнях водохранилища.

Чтобы убедиться в том, что выбранный нами 
размер окна для обработки сейсмических запи-
сей в 200 с обеспечивает необходимую точность 
определения частотных характеристик, был про-
ведён сравнительный анализ данных с окном 
10000 с для 2017 г., представленный на рис. 5.

В результате проведённого анализа можно ска-
зать, что окно в 200 с полностью воспроизводит

Рис. 4. Корреляция частоты собственных колебаний плотины на примере 4-й моды (фиолетовый цвет) 
с уровнем водохранилища (синий цвет) и температурой (оранжевый цвет),  

а также графиком деформации в секции 31 (красный цвет) [Зюзина и др., 2025],  
по данным за 2016–2018 гг. (а) и 2022–2024 гг. (б), E-компонента.

Пиковые значения деформации отмечены чёрными вертикальными полосами
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Рис. 5. Сравнение частоты собственных колебаний плотины на примере 4-й моды  
в зависимости от размера окна в 200 с (розовый цвет)  

и 10000 с (синий цвет) оконного преобразования Фурье по данным за 2017 г., E-компонента

результаты окна со значением в 10000 с. Также 
для количественной оценки этого наблюдения 
был применён статистический метод расчёта 
коэффициента линейной корреляции Пирсона 
между полученными наборами данных. Значе-
ние коэффициента составило 0.99, что свиде-
тельствует о практически полной линейной зави-
симости между ними. Следовательно, для целей 
нашего исследования, направленного на отсле-
живание изменений частоты, увеличение раз-
мера окна не вносит значимого вклада в точ-
ность результатов.

Результаты и обсуждение

Возвращаясь к рис. 4, можно заметить, 
что колебания частоты при достижении высших 
уровней наполнения водохранилища отмечаются 
практически во все представленные годы. Если 
же рассмотреть график за 2024 г., на нём также 
виден всплеск частоты собственных колебаний, 
который можно связать с раскрытием трещин. 
Однако в статье [Зюзина и др., 2025] утвержда-
ется, что в 2024 г. свидетельств раскрытия тре-
щины зафиксировано не было, но рост дефор-
маций всё равно фиксируется, пусть и не такой 
значительный, как в 2017 году.

По данным, получаемым в трёх киломе-
трах от плотины, трудно однозначно подтвер-
дить факт раскрытия трещины в плотине, тем 
не менее, имеющиеся частотные аномалии могут 
свидетельствовать о наличии такого дефекта. 
Ведь мы регистрируем интегральные значения 
колебания всего сооружения, а не его локальных 
участков, что позволяет выявить общее нали-
чие повреждений. Локализация дефектов тре-
бует более детальных наблюдений и комплекс-
ного подхода с обследованием непосредственно 
на самой плотине. Кроме того, необходимо 

также учитывать влияние на изучаемые параме-
тры проводимых ремонтных работ на плотине.

Замечено, что наибольшие изменения 
частоты наблюдаются при достижении мини-
мальных значений заполнения водохранилища. 
Это может быть обусловлено снятием гидроста-
тической нагрузки и последующим процессом 
релаксации.

Данный метод, основанный на изучении 
частот собственных колебаний, может высту-
пать как система раннего выявления нарушений 
целостности сооружения, способная уловить 
зарождение негативной тенденции на самой 
ранней стадии.

Выводы

Проведённое исследование динамических 
характеристик Саяно-Шушенской ГЭС с исполь-
зованием сейсмологических данных демонстри-
рует хороший потенциал метода мониторинга 
частот собственных колебаний для оценки струк-
турной целостности крупных гидротехнических 
сооружений. Анализ данных с удалённых стан-
ций за 2016–2018 и 2022–2024 гг. подтвердил 
устойчивую обратную корреляционную зависи-
мость частот собственных колебаний плотины 
от уровня воды, что согласуется с теоретическими 
ожиданиями. Увеличение массы плотины за счёт 
присоединённой массы воды приводит к сниже-
нию частот. Температурный фактор проявляет 
себя менее однозначно – наблюдались как пря-
мые, так и обратные корреляции с частотой. Это 
может быть связано с комбинацией различных 
причин, а также с неточностью измерений.

Главный интерес представляют периоды мак-
симального наполнения водохранилища, когда 
зафиксированы аномалии в поведении частот, 
что может быть связано с наличием нарушений 
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в структуре плотины. Однако однозначно интер-
претировать эти изменения пока достаточно 
сложно, также необходим учёт влияния ремонт-
ных мероприятий на объекте и данных о локаль-
ных условиях, таких как температура непосред-
ственно на плотине.

Таким образом, для повышения надёжно-
сти диагностики необходимо получить допол-
нительные параметры, включая данные с мете-
останций, расположенных ближе к объекту, 
а также учесть историю эксплуатации сооруже-
ния, включая ремонтные работы. Перспективы 
дальнейших исследований заключаются в уточ-
нении влияния каждого фактора и разработке 
комплексных моделей, способных разделять 
эффекты окружающей среды и структурных 
изменений, что позволит более точно выявлять 
скрытые дефекты и прогнозировать поведение 
плотины в долгосрочной перспективе.

Работа выполнена за счёт гранта Российского 
научного фонда № 24-27-00145 (https://rscf.ru/
project/24-27-00145), с использованием данных, 
полученных на уникальной научной установке 
«Сейсмоинфразвуковой комплекс мониторинга 
арктической криолитозоны и комплекс непре-
рывного сейсмического мониторинга Российской 
Федерации, сопредельных территорий и мира» 
(https://ckp-rf.ru/usu/507436/, http://www.gsras.
ru/unu/).
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Abstract This paper explores the potential for diagnosing the structural integrity of large hydraulic 
structures, such as the Sayano-Shushenskaya HPP (SSHPP), through the analysis of changes in their 
natural frequencies. It describes how seismographs located away from the object under study can be used 
to record microseismic vibrations and convert them into spectrograms. Using data collected between 2016 
and 2024, it analyses the dependence of the fourth mode frequency of dam vibrations on the fill level 
and ambient temperature of the dam. The analysis shows that the fill level significantly affects the natural 
frequency of the dam, while the effect of temperature demonstrates ambiguous dependencies that require 
further study. The paper demonstrates that abnormal changes in the natural frequency of the dam occur 
at the limit values of the reservoir filling, which can be associated with defects revealed when significant 
hydrostatic pressure arises. Graphs comparing the frequency with deformation graphs obtained directly on 
the dam are provided. The importance of taking into account various factors that may influence changes in 
natural frequencies is emphasized. The method under consideration has shown good potential and should 
be tested on several structures in future.

Keywords Sayano-Shushenskaya hydroelectric power station, natural frequencies, seismic monitoring, 
reservoir water level, crack formation.
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